SORPTION OF METHYLENE BLUE BY POLISORB MP FROM WATER AND 40% AND 95% AQUEOUS-ETHANOL SOLUTIONS
- Authors: Podlipskaya T.Y.1, Barakina M.K1,2, Demidova M.G1, Shaparenko N.O1, Tatarchuk V.V1, Plyusnin P.E1, Maksimovskiy E.A1, Guselnikova T.Y.1, Polyakova E.V1, Bulavchenko A.I1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 99, No 10 (2025)
- Pages: 1540-1555
- Section: PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
- Submitted: 27.01.2026
- Published: 15.10.2025
- URL: https://journals.rcsi.science/0044-4537/article/view/376382
- DOI: https://doi.org/10.7868/S3034553725100116
- ID: 376382
Cite item
Abstract
The chemical composition of the medical enterosorbent Polisorb MP (colloidal silica particles) and its surrounding dispersive medium was determined using AES ICP, CHNS analysis, TGA, and capillary electrophoresis. Dispersions of Polisorb in water and in 40% and 95% aqueous-ethanol solutions were prepared and characterized by photon correlation spectroscopy (PCS) and phase analysis light scattering (PALS). The number-average hydrodynamic diameter of fractal-like aggregates of primary particles was 105 – 135 nm, and the electrophoretic potential ranged from –28 to –22 mV. The charge of a single aggregate decreased with increasing alcohol content in the sequence: –89, –54, and –29 e. The maximum sorption of methylene blue sharply decreased from 10 to 0.7 mg/g under these conditions. It was shown that the maximum sorption values significantly exceed the number of negative surface centers calculated by PALS within the spherical aggregate model, but are lower than the number of silanol groups determined by TGA. A cation-exchange mechanism for the sorption of cationic dyes by Polisorb MP is hypothesized.
About the authors
T. Yu Podlipskaya
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
M. K Barakina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: ikshapar@mail.ru
Novosibirsk, Russia; Novosibirsk, Russia
M. G Demidova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
N. O Shaparenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: nikshapar@mail.ru
Novosibirsk, Russia
V. V Tatarchuk
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
P. E Plyusnin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
E. A Maksimovskiy
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
T. Ya Guselnikova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
E. V Polyakova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
A. I Bulavchenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: ikshapar@mail.ru
Novosibirsk, Russia
References
- Чуйко A.A., Тертых В.А., Лобанов В.В. Медицинская химия и клиническое применение диоксида кремния. Киев, 2003. 414 с.
- Вавилова В.П., Вавилов А.М., Царькова С.А. и др. // Педиатрия. Consilium Medicum. 2021. V. 2. P. 158. https://doi.org/10.26442/26586630.2021.2.200967
- Закирова А.М., Файзуллина Р.А., Мороз Т.Б. и др. // Российский вестник перинатологии и педиатрии. 2022. Т. 67. № 1. С. 76. https://doi.org/10.21508/1027-4065-2022-67-1-76-81
- Skrabkova H.S., Bubenschikov V.B., Kodina G.E. et al. // IOP Conf. Series: Materials Science and Eng. 2019. V. 487. P. 012026. https://doi.org/10.1088/1757-899X/487/1/012026
- Kimyashov A.A., Syromolotov A.V., Pavlov M.O. // Butlerov Communications. 2020. V. 64. № 10. P. 63. https://doi.org/10.37952/ROI-jbc‑01/20-64-10-63
- Shklyaeva A.S., Vasilieva O.V., Kucuk V.I. // Butlerov Communications. 2013. V. 35. № 8. P. 94.
- Арефьева О.Д., Пироговская П.Д., Панасенко А.Е. и др. // Химия раст. сырья. 2021. № 1. C. 327. https://doi.org/10.14258/jcprm. 2021017521
- Орбиданс А.Г., Терехина Н.А., Терехин Г.А. // Материалы V Международной научнопрактической конференции “Фармация и общественное здоровье”. Екатеринбург. 2012. С. 49.
- Герникова Е.П., Лутцева А.И., Боковикова Т.Н. и др. // Ведомости НЦЭСМП. 2013. № 4. С. 47.
- Yagub M.T., Sen T.K., Afroze S., Ang H.M. // Adv. Colloid Interface Sci. 2014. V. 209. P. 172. https://doi.org/10.1016/j.cis.2014.04.002
- Agarwala R., Mulky L. // ChemBioEng Rev. 2023. P. 10. P. 326. https://doi.org/10.1002/cben. 202200011
- Sharma R., Kar P.K., Dash S. // J. Phys. Chem. C. 2023. V. 127. P. 20539. https://doi.org/10.1021/acs.jpcc.3c05023
- Li Y., Pan B., Miao H. et al. // Chem. Res. Chinese Universities. 2020. V. 36. P. 1272. https://doi.org/10.1007/s40242-020-0063-9
- Benkhayaa S., M’rabet S., El Harfi A. // Inorg. Chem. Commun. 2020. V. 115. P. 107891. https://doi.org/10.1016/j.inoche.2020.107891
- Bairabathina V., Kumar Shanmugam K.S., Chilukoti G.R. et al. // Color Technol. 2022. V. 138. P. 329. https://doi.org/10.1111/cote. 12605
- Fang H., Ma J., Wilhelm M.J., DeLacy B.G., Dai H.L. // Part. And Part. Syst. Charact. 2021. V. 38. P. 2000220. https://doi.org/10.1002/ppsc. 202000220
- Селиванов Е.В. Красители в биологии и медицине: Справочник. Барнаул: Азбука, 2003. 40 c.
- Пьянова Л.Г., Лихолобов В.А., Герунова Л.К. и др. // Журн. прикл. химии. 2017. Т. 90. № 12. C. 1678.
- Бабешина Л.Г., Келус Н.В., Кузнецов А.А. // Фармация. 2017. Т. 66. № 2. С. 33. https://doi.org/10.1134/S0023291219040153
- ГОСТ ИСО 8130-3-2006
- Mueller R., Lammler H.K., Wegner K., Pratsinis S.E. // Langmuir. 2003. V. 19. № 1. P. 160. https://doi.org/10.1021/la025785w
- NETZSCH Proteus Thermal Analysis v.6.1.0 — NETZSCH-Geratebau GmbH- Selb/Bayern, Germany. 2013.
- Шапаренко Н.О., Бекетова Д.И., Демидова М.Г., Булавченко А.И. // Коллоидн. журн. 2019. T. 81. № 4. C. 532. https://doi.org/10.1134/S0023291219040153
- Полеева Е.В., Арымбаева А.Т., Булавченко А.И. // Журн. физ. химии. 2020. Т. 94. № 11. C. 1664. https://doi.org/10.31857/S0044453720110278
- Shaparenko N.O., Demidova M.G., Bulavchenko A.I. // Electrophoresis. 2021. V. 42. № 16. P. 1648. https://doi.org/10.1002/elps. 202100060
- Knysh A., Sokolov P., Nabiev I. // J. Biomed. Photonics. Eng. 2023. V. 9. P. 020203. https://doi.org/10.18287/JBPE23.09.020203
- Ohshima H. // J. Colloid Interface Sci. 1994. V. 168. P. 269. https://doi.org/10.1006/jcis.1994.1419
- Loeb A.L., Overbeek J. Th.G., Wiersema P.H. // The Electrical Double Layer Around a Spherical Colloid Particle. MIT Press: Cambridge, MA. 1961. P. 375
- Справочник химика. Второе издание. ТЗ. Химия М-Л. 1964. С. 1005.
- https://www.ntmdt-tips.com/products/view/nsg01
- ГОСТ 25142-82. Межгосударственный стандарт “Шероховатость поверхности”: Термины и определения. М.: ИУС 7-2017, 2018. 32 с.
- Bulavchenko A.I., Batishchev A.F., Batishcheva E.K., Torgov V.G. // J. Phys. Chem. B. 2002. V. 106. № 25. P. 6381. https://doi.org/10.1021/jp0144000
- Мурашкевич А.Н., Лавичкая А.С., Баранникова Т.И., Жарский И.М. // Журн. прикл. спектроскопии. 2008. Т. 75. № 5. С. 724.
- Арефьева О.Д., Пироговская П.Д., Панасенко А.Е. и др. // Химия раст. сырья. 2021. № 1. C. 327.
- Rahman I.A., Vejayakumaran P., Sipaut C.S. et al. // Mater. Chem. Phys. 2009. V. 114. P. 328. https://doi.org/10.1016/j.matchemphys.2008.09.068
- Qasim M., Ananthaiah J., Dhara S. et al. // Adv. Sci. Eng. Med. 2014. V. 6. № 9. P. 965. https://doi.org/10.1166/asem.2014.1578
- Shifrin K.S. Scattering of light in a turbid medium. Washington: NASA, 1968. P. 212.
- Van de Hulst H.C. Light scattering by small particles. New York: J. Wiley, 1957. P. 470
- Maxim M.E., Stinga G., Iovescu A., Baran A. et al. // Rev. Roumaine Chimie. 2012. V. 57. P. 203.
- Xing X., Qu H., Shao R. et al. // Water Sci. Technol. 2017. V. 76. P. 1243. https://doi.org/10.2166/wst.2017.268
- Boudjema L., Assaf M., Salles F. et al. // Molecules. 2024. V. 29. P. 2952. https://doi.org/10.3390/molecules29132952
- Romeroa C.P., Jeldresb R.I., Quezada G.R. et al. // Colloids Surf. A: Physicochem. Eng. Asp. 2018. V. 538. P. 210. https://doi.org/10.1016/j.colsurfa.2017.10.080
- Bjorklund S., Kocherbitov V. // Sci. Rep. 2017. V. 7. P. 9960. https://doi.org/10.1038/s41598-017-10090-x
- Гиндин Л.М. Экстракционные процессы и их применение. М.: Наука, 1984. С. 144
- Зайцева Н.В., Землянова М.А., Звездин В.Н. и др. // Вопросы питания. 2014. Т. 83. 2014. C. 52.
- Coelho D., Thovert J.F., Thouy R., Adler P.M. // Fractals. 1997. V.5. P. 507. https://doi.org/10.1142/S0218348X97000401
- Engelhardt M.B., Sugimoto T., Papastavrou G., Kobayashi M. // Colloids Surf. A: Physicochem. Eng. Asp. 2024. V. 703. P. 135244. https://doi.org/10.1016/j.colsurfa.2024.13524448.
- Haleem A., Shafiq A., Chen S.Q., Nazar M. // Molecules. 2023. V. 28. P. 1081. https://doi.org/10.3390/molecules28031081
- Саббатовский К.Г., Сергеева И.П., В.Д. Соболев В.Д. // Коллоидн. журн. 2020. Т. 82. С. https://doi.org/10.31857/S0023291219060168
- Sharma R., Kar P.K., Dash S. // Colloids Surf. A: Physicochem. Eng. Asp. 2021. V. 624. P. 126847. https://doi.org/10.1016/j.colsurfa.2021.126847
- Dangui A.Z., Santos V.M.S., Gomes B.S. et al. // Spectroscopy. 2018. V. 203. P. 333. https://doi.org/10.1016/j.saa.2018.05.087
- Жуков А.Н., Федорова И.Л. // Коллоидн. журн. 2004. Т. 66. С. 333.
- Boverhof D.R., Bramante C.M., Butala J.H. et al. // Regul. Toxicol. Pharmacol. 2015. V. 73. P. 137. https://doi.org/10.1016/j.yrtph.2015.06.001
- Bujdak J. // J. Photochem. Photobiol. C. Photochem. Rev. 2018. V. 35. P. 108. https://doi.org/10.1016/j.jphotochemrev.2018.03.001
Supplementary files


