STRUCTURAL FEATURES OF MIXED La–Al OXIDES AND THEIR CATALYTIC PROPERTIES IN THE METHANE OXIDATION PROCESS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the synthesis method and pretreatment on the structural features of mixed lanthanum–aluminum oxide samples with a fixed atomic ratio of La:Al = 1:1 and on their catalytic properties in methane oxidation has been investigated. The use of organic substances (filter paper or starch) as structuring agents during synthesis, treatment in aqueous or aqueous–ammonia fluids combined with high–temperature processing at different stages makes it possible to vary the phase composition, structural characteristics, and morphology of the resulting systems. It is shown that no direct correlations exist between the structural characteristics, morphology, and catalytic properties of La–Al oxides. It is suggested that the efficiency of the systems in methane oxidation is determined exclusively by the type and concentration of point defects–primarily by the state of surface oxygen anions. At the same time, the phase composition and morphology influence the number and type of active sites and their accessibility to reactants.

About the authors

P. R Vasyutin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: mysinev@yandex.ru
Moscow, Russia

M. Yu Sinev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: mysinev@yandex.ru
Moscow, Russia

Yu. A Gordienko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: mysinev@yandex.ru
Moscow, Russia

E. Yu Lyubimov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: mysinev@yandex.ru
Moscow, Russia

E. A Lagunova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: mysinev@yandex.ru
Moscow, Russia

Yu. D Ivakin

Lomonosov Moscow State University, Department of Chemistry

Email: mysinev@yandex.ru
Moscow, Russia

References

  1. Johnsson M., Lemmens P. Crystallography and Chemistry of Perovskites in: Handbook of Magnetism and Advanced Magnetic Materials / Ed. by H. Kronmuller and S. Parkin. V. 4: Novel Materials. John Wiley & Sons, 2007. https://legacy.materialsproject.org/materials
  2. Rizwan M., Gul S., Iqbal T. et al. // Mater. Res. Express. 2019. V. 6. P. 112001.
  3. Atta N.F., Galal A., El-Ads E.H. // Perovskite Materials Synthesis, Characterisation, Properties, and Applications; Tech: Rijeka, Croatia, 2016. 650 P.
  4. Fung K.Z., Chen T.Y. // Solid State Ion. 2011. V. 188. P. 64.
  5. da Silva C.A., de Miranda P.E.V. // Int. J. Hydrogen Energy. 2015. V. 40. P. 10002.
  6. Nguyen T.L., Dokiya M., Wang S.R. et al. // Solid State Ionics. 2000. V. 130. P. 229.
  7. Munoz H.J., Korili S.A., Gil A. // Materials. 2022. V. 15 (9). P. 3288.
  8. Imai H., Tagawa T. // J. Chem. Soc., Chem. Commun. 1986. V. 52. P. 52.
  9. Ivanov D.V., Isupova L.A., Gerasimov E. Yu. et al. // Applied Catalysis A: General. 2014. V. 485. P. 14.
  10. Иванова Ю.А., Петров Р.В., Решетников С.И., Исупова Л.А. // Вестник Томского государственного университета. Химия. 2017. № 8. С. 38.
  11. Yabe T., Kamite Y., Sugiura K. et al. // J. CO2 Util. 2017. V. 20. P. 156.
  12. Ломоносов В.И., Синев М.Ю. // Кинетика и катализ. 2016. Т. 57(4). С. 652. Lomonosov V.I., Sinev M.Y. // Kinetics and Catalysis. 2016. V. 57. № 5. P. 647.
  13. Edge L.F., Schlom D.G., Chambers S.A. et al. // Appl. Phys. Lett. 2004. V. 84. P. 726.
  14. Athayde D.D., Souza D.F., Silva A.M.A. et al. // Ceram. Int. 2016. V. 42. P. 6555.
  15. Zhang Q., Saito F., Am. J. // Ceram. Soc. 2000. V. 83. P. 439.
  16. Sim Y., Yang I., Kwon D. et al. // Catalysis Today. 2020. V. 352. P. 134.
  17. Kasala S., Sudandara Doss M.V. // Indian Ceram. Soc. 2019. V. 78. P. 13.
  18. Prado-Gonjal J., Arevalo-Lopez A.M., Moran E. // Mater. Res. Bull. 2011. V. 46. P. 222.
  19. Sim Y., Yoo J., Ha J.M., Jung J.C. // J. Energy Chem. 2019. V. 35. P. 1.
  20. Djoudi L., Omari M. // J. Inorg. Organomet. Polym. Mater. 2015. V. 25. P. 796.
  21. Kuo C.L., Chang Y.-H., Wang M. // Ceramics International. 2009. V.35. № 1. P. 327.
  22. Li W., Zhuo M.W., Shi J.L. // Materials Letters. 2004. V. 58. № 3‒4. P. 365.
  23. Torbin S.N., Danchevskaya M.N., Martynova L.F., Muravieva G.P. // High Press. Res. 2001. V. 20. P. 109.
  24. Danchevskaya M.N., Ivakin Yu.D., Torbinet S.N. et al. // J. Mater. Sci. 2006. V. 41. P. 1385.
  25. Abe Y., Satou I., Aida T., Adschiri T. // Ceram. Int. 2018. V. 44. P. 12996.
  26. Silveira I.S., Ferreira N.S., Souza D.N. // Ceram. Int. 2021. V. 47. P. 27748.
  27. Wang H., Zhang L., Hu C. et al. // Chem. Eng. J. 2018. V. 332. P. 572.
  28. An S., Cho J., Kwon D., Jung J.C. // Chem. Eng. 2021. V. 5. P. 14.
  29. Da Silva C.A., De Miranda P.E.V. // Int. J. Hydrogen Energy. 2015. V.40. P. 10002.
  30. Anil C., Modak J.M., Madras G. // Mol. Catal. 2020. V. 484. P. 110805.
  31. Tian Z.-Q., Yu H.-T., Wang Z.-L. // Materials Chemistry and Physics. 2007. V. 106. P. 126.
  32. Fu Z., Liu B. // Ceram. Int. 2016. V. 42. P. 2357.
  33. Figueredo G.P., Medeiros R.L.B.A., Macedo H.P. et al. // Int. J. Hydrogen Energy 2018. V. 43. P. 11022.
  34. Ianos R., Lažau R., Borčanescu S., Băbueă R. // Ceram. Int. 2014. V. 40. P. 7561.
  35. Lee G., Kim I., Yang I. et al. // Appl. Surf. Sci. 2018. V. 429. P. 55.
  36. Stathopoulos V.N., Kuznetsova T., Lapina O. et al. // Materials Chemistry and Physics. 2018. V. 207. P. 423.
  37. Kaplin I. Yu., Lokteva E.S., Golubina E.V., Lunin V.V. // Molecules 2020. V. 25. P. 4242.
  38. Алексеев Е.С., Алентьев А.Ю., Белова А.С. и др. // Успехи химии. 2020. Т. 89. № 12. С. 1337.
  39. Галкин А.А., Лунин В.В. // Там же. 2005. Т. 74. № 1. С. 24. Galkin A.A., Lunin V.V. // Rus. Chemical Reviews. 2005. Т. 74. № 1. С. 21.
  40. Danchevskaya M.N., Ivakin Y.D., Torbin S.N., Muravieva G.P. // The Journal of Supercritical Fluids. 2007. V. 42. № 3. P. 419.
  41. Васютин П.Р., Синев М.Ю., Ивакин Ю.Д. и др. // Сверхкритические Флюиды: Теория и Практика. 2023. Т. 18. № 2. C.87. Vasyutin P.R., Sinev M.Y., Ivakin Y.D. et al. // Russ. J. Phys. Chem. B. 2023. V.17. P. 1593.
  42. Васютин П.Р., Синев М.Ю., Лагунова Е.А. и др. // Сверхкритические Флюиды: Теория и Практика. 2023. Т. 18. № 3. С. 51. Vasyutin P.R., Sinev M.Y., Lagunova, E.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1646.
  43. Васютин П.Р., Синев М.Ю., Любимов Е.Ю., и др. // Сверхкритические Флюиды: Теория и Практика. 2024. Т. 19. № 4. С. 25. Vasyutin P.R., Sinev M. Yu., Lyubimov E.Yu. et al. // Russ. J. of Phys. Chem. B. 2024. V.18. P. 1893.
  44. Sinev M.Yu., Ponomareva E A., Sinev I.M. et al. // Catal. Today. 2019. V. 333. P. 36.
  45. Lomonosov V.I., Gordienko Yu.A., Sinev M.Yu. et al. // Russ. J. Phys. Chem. A. 2018. V. 92. № 3. P. 430.
  46. Choudhary V.R., Rane V.H. // J. Catal. 1991. V. 130. № 2. P. 411.
  47. Otsuka K., Jinno K., Morikawa A. // Chem. Lett. 1985. V. 14. P. 499.
  48. Korf S.J., Roos J.A., Diphoorn J.M. et al. // Catal. Today. 1989. V. 4. P. 279.
  49. Боресков Г.К. Гетерогенный катализ. М.: Наука, 1986. 304 с.
  50. Андрушкевич Т.В., Бухтияров В.И. // Кинетика и катализ. 2019. T. 60. № 2. C. 152.
  51. Huang P., Zhao Y., Zhang J., Zhu Y., Sun Y. // Nanoscale. 2013. V. 5. P. 10844.
  52. Jiang T., Song J., Huo M. et al // RSC Adv. 2016. V. 6. P. 34872.
  53. Davydov A.A., Shepotko M.L., Budneva A.A // Catal Today. 1995. V. 24. P. 225.
  54. Barrault J., Grosset C., Hadj Aissa M. et al. // Catal. Today. 1990. V. 6. P. 535.
  55. Taylor R.P., Schrader G.L. // Ind Engng Chem Res. 1991. V. 30. P. 1016.
  56. Choudhary V.R., Rane V.H. // J Chem Soc. Faraday Trans. 1994. V. 90. P. 3357.
  57. Long R., Zhou S., Huang Y. et al. // Appl Catal A. 1995. V. 133. P. 269.
  58. Wan H.L., Zhou X.P., Weng W.Z. et al. // Catal Today. 1999. V. 51. P. 161.
  59. da Silva C.A., P.E.V. de Miranda. // Intern. J. of Hydrogen Energy. 2015. V. 40. P. 10002.
  60. Fabiana M., Arias-Serrano B.I., Yaremchenko A.A. et al. // J. of the European Ceramic Society. 2019. V. 39. P. 5298.
  61. Spinicci P R., Marini P., De Rossi S. et al. // J. Mol Catal A-Chem. 2001. V. 176. (1‒2). P. 253.
  62. Sato A., Ogo S., Takeno Y. et al. // ACS Omega. 2019. V. 4(6). P. 10438.
  63. Yabe T., Kamite Y., Sugiura K. et al. // J. CO2 Util. 2017. V. 20. P. 156.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).