INFLUENCE OF STIRRING SPEED ON KINETIC AND MORPHOLOGICAL PARAMETERS OF GROWTH OF AMORPHOUS SILICA NANOSPHERES OBTAINED BY THE STOBER METHOD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calorimetric and conductometric analysis methods in online mode for the synthesis of silica globules have been used. The dependence of the initial reaction rate of sol synthesis on the stirring rate of the reaction mixture was obtained. The stirring regions corresponding to diffusive and kinetic character of synthesis at the ratio of components Si(OC2H5)4 : H2O : NH3H2O – 0.2 : 18.9 : 2.0 (mol l−1) have been revealed. The kinetic region lies in the stirring frequency range of 7–23 Hz, which is characterized by a constant process rate and quality of the grown nanospheres, and the diffusive one up to 7 Hz with varying synthesis parameters. SEM-photographs of samples with determination of average sizes and deviation of sizes at different stirring speeds were analyzed. Morphological defects of nanospheres grown in the diffusion synthesis mode have been observed.

About the authors

I. I Yurasova

Moscow State University N. E. Bauman Moscow State Technical University

Email: yurasovaii@bmstu.ru
Moscow, Russia

L. N Murayeva

Moscow State University N. E. Bauman Moscow State Technical University

Moscow, Russia

A. R Ibragimov

Moscow State University N. E. Bauman Moscow State Technical University

Moscow, Russia

N. N Kuznetsov

Moscow State University N. E. Bauman Moscow State Technical University

Moscow, Russia

References

  1. Haritha K., Henry D., Shirley J. et al. // Clinical therapeutics. 2023. V. 45. P. 1060.
  2. Yingze C., Wentao Zh., Xiang Zh. et al. // International Scholarly Research Notices. 2013. V. 2013. P. 745397.
  3. Dongming Q., Chao L., Hongting Zh. et al. // J. of Dispersion Science and Technology. 2017. V. 38. P. 70.
  4. Stöber W., Fink A., Bohn E. // J. of Colloid and Interface Sci. 1968. V. 26. P. 62.
  5. Ghimire P.P., Jaroniec M. // J. of Colloid and Interface Sci. 2021. V. 584. P. 838.
  6. Han Y., Ziyang L., Zhaoqiang T. // Langmuir. 2017. V. 33. P. 5879.
  7. Vörös-Horváth B., Salem A., Kovács B. et al. // Nanomaterials. 2024. V. 14. P. 1561.
  8. Bogush G., Tracy M., Zukoski I. // J. of non-crystalline solids. 1988. V. 104. P. 95.
  9. Giesche H. // J. of the European Ceramic Society. 1994. V. 14. P. 189.
  10. Fernandes R., Raimundo I., Pimentel M. // Colloids and Surfaces A. 2019. V. 577. P. 1.
  11. Chang Y.W., Kim W.S., Kim W.S. // Korean J. of Chem. Engineering. 1996. V. 13. P. 496.
  12. Gautam K.D., Ullas A.V. // Materials Today: Proceedings. 2023. V. 74. P. 713.
  13. Zhang S., Wang C. // Nano-Structures & Nano-Objects. 2023. V. 35. P. 100994.
  14. Yurasova I.I., Yurasov N.I., Plokhikh A.I. et al. // Russian J. of Physical Chemistry. 2021. V. 95. P. 1207.
  15. Yurasova I.I., Yurasov N.I., Galkin N.K. et al. // Russian J. of General Chemistry. 2024. V. 92. P. 2005.
  16. Yurasova I.I., Yurasov N.I., Veligzhanin A.A. et al. // Nanobiotechnology Reports. 2024. V. 19. P. 301.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).