PEROXIDE AND AEROBIC DESULFURIZATION CATALYSTS BASED ON HYBRID PLASMA ELECTROLYTICALLY OXIDIZED LAYERS WITH PHOSPHORUS, TUNGSTEN AND IRON OXIDES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Catalytically active coatings on titanium were synthesized by plasma electrolytic oxidation (PEO) in aqueous electrolytes containing sodium phosphate and tungstate, as well as iron chelate complexes with EDTA. Analysis of EDX, XPS and XRD data allowed concluding that the PEO coatings contain titanium dioxide and amorphous tungstates and/or phosphates of iron. High phosphorus concentrations (up to 6 at. %) promoted amorphization. Testing the PEO catalysts showed their activity in oxidative desulfurization (ODS) of thiophene and dibenzothiophene with hydrogen peroxide and air oxygen.

About the authors

I. G. Tarkhanova

Lomonosov Moscow State University. M. V. Lomonosov Moscow State University

Email: itar_msu@mail.ru
Department of Chemistry Moscow, Russia

I. V. Lukiyanchuk

Institute of Chemistry, Far East Branch, Russian Academy of Sciences

Vladivostok, Russia

E. A. Eseva

Lomonosov Moscow State University. M. V. Lomonosov Moscow State University

Department of Chemistry Moscow, Russia

M. S. Vasilyeva

Institute of Chemistry, Far East Branch, Russian Academy of Sciences; Far Eastern Federal University

Vladivostok, Russia; Vladivostok, Russia

M. O. Lukashov

Lomonosov Moscow State University. M. V. Lomonosov Moscow State University

Department of Chemistry Moscow, Russia

V. V. Korochentsev

Institute of Chemistry, Far East Branch, Russian Academy of Sciences

Vladivostok, Russia

V. V. Tkachev

MSU-BIT University

Faculty of Material Science Shenzhen, China

References

  1. Reşitoğlu İ.A., Altinişik K., Keskin A. // Clean. Techn. Environ. Policy. 2015. V. 17. Р. 15. https://doi.org/10.1007/s10098-014-0793-9
  2. Said S., Mikhail S., Riad M. // Cleaner Chemical Engineering. 2025. V. 11. P. 100140. https://doi.org/10.1016/j.clce.2024.100140.
  3. Marafi A., Albazzaz H., Rana M.S. //Catal. Today. 2019. V. 329. P. 125. https://doi.org/10.1016/j.cattod.2018.10.067
  4. Tochtermann J., Tietze F., Huber M., et al. // Energ. Fuel. 2025. V. 39. № 1. P. 781. https://doi.org/10.1021/acs.energyfuels.4c04387
  5. Ma C., Chen D., Liu F., et al. // RSC Adv. 2015. V. 5. № 117. P. 96945. doi: 10.1039/C5RA16277G
  6. Awad E.M., Wadood T.M., Saba A.G. // Cleaner Materials. 2024. V. 13. P. 100262 https://doi.org/10.1016/j.clema.2024.100262
  7. Li Z., Hong G.H., Park J.S., et al. // Sci. Adv. Mater. 2017. V. 9. № 7. P. 1236. https://doi.org/10.1166/sam.2017.2889
  8. Saeed M., Munir M., Intisar A., Waseem A. // ACS Omega 2022. V. 7. № 18. P. 15809. https://doi.org/10.1021/acsomega.2e00886
  9. Jiang Y.-N., Liu B., Yang W., et al. // CrystEngComm. 2016. V.18. № 10. P. 1832. doi: 10.1039/C5CE02445E
  10. Qin H., Chen L., Yu X., Wu M., Yan Z. // J. Mater. Sci. Mater. Electron. 2018. V. 29. P. 2060. doi: 10.1007/s10854-017-8119-4
  11. Zehra T., Patil S.A. Shresth N.K., et al. // J. Alloys Compd. 2022. V. 916. P. 165445. https://doi.org/10.1016/j.jallcom.2022.165445
  12. Fincur N.L., Grujic-Brojein M., Scepanovic M.J., et al. // React. Kinet. Mech. Catal. 2021. V. 132. № 2. P. 1193. https://doi.org/10.1007/s11144-021-01936-7
  13. Simchen F., Sieber M., Kopp A., Lampke T. // Coatings. 2020. V.10. № 7. P. 628. https://doi.org/10.3390/coatings10070628.
  14. Sikdar, S., Menezes P.V., Maccione R., et al. // Nanomaterials. 2021. V. 11. № 6. P. 1375. https://doi.org/10.3390/nano11061375.
  15. Samadi P., Witonska I.A. // Catal. Commun. 2023. V. 181. P. 106722. https://doi.org/10.1016/j.catcom.2023.106722.
  16. Lukiyanchuk I.V., Rudnev V.S., Tyrina L.M., Chernykh I.V. // Appl. Surf. Sci. 2014. V. 315. P. 481. http://dx.doi.org/10.1016/j.apsusc.2014.03.040.
  17. Karakurkchi A., Sakhnenko M., Ved M., Gorokhyvsky A. // Mater. Today Proc. 2022. V. 50. P. 502. https://doi.org/10.1016/j.matpr.2021.11.302.
  18. Patcas F., Krysmann W. // Appl. Catal. A: Gen. 2007. V. 316. № 2. P. 240. https://doi.org/10.1016/j.apcata.2006.09.028.
  19. Rudnev, V.S., Lukiyanchuk I.V., Vasilyeva M.S., et al. // Appl. Surf. Sci. 2017. V. 422. P. 1007. https://doi.org/10.1016/j.apsusc.2017.06.071.
  20. Bryzhin A.A., Tarkhanova I.G., Gantman M.G., et al. // Surf. Coat. Technol. 2020. V. 393. P. 125746. https://doi.org/10.1016/j.surfcoat.2020.125746.
  21. Lukiyanchuk I.V., Vasilyeva M.S., Ustinov A. Yu., et al. // Surf. Coat. Technol. 2022. V. 434. P. 128200. https://doi.org/10.1016/j.surfcoat.2022.128200
  22. Vasilyeva M.S., Lukiyanchuk I.V., Sergeev A.A., et al. // Prot. Met. Phys. Chem. Surf. 2021. Vol. 57. No 3. P. 543. doi: 10.1134/S2070205121030242.
  23. Budnikova Yu.B., Vasilyeva M.S., Lukiyanchuk I.V. // ChemChemTech. 2025. V. 68. No 1. P. 79. doi: 10.6060/ivkkt.20256802.7072.
  24. Budnikova Y.B., Vasilyeva M.S., Lukiyanchuk I.V. et al. // J. Mater. Sci.: Mater. Electron. 2023. V. 34. P. 1973. https://doi.org/10.1007/s10854-023-11408-4
  25. Vasilyeva M.S., Lukiyanchuk I.V., Sergeev A.A., et al. // Surf. Coat. Technol. 2021. V. 424. P. 127640. https://doi.org/10.1016/j.surfcoat.2021.127640
  26. Khrisanfova O.A., Volkova L.M., Gnedenkov S.V., et al. // Zh. Inorg. Chem. 1995. V. 40. No. 4. P. 558. (In Russ.).
  27. Zhang X., Cai G., Lv Y., Wu Y., Dong Z. // Surf. Coat. Technol. 2020. V. 400. P. 126202. https://doi.org/10.1016/j.surfcoat.2020.126202
  28. Pershina S.V. // Russ. J. Appl. Chem. 2019. V.92. No 4. P. 482. doi: 10.1134/S1070427219040037.
  29. Moore L., Dutta I., Wheaton B., et al // J. Am. Ceram. Soc. 2020. V. 103. P. 3552. https://doi.org/10.1111/jace.17023
  30. Tarkhanova I.G., AliZade A.G., Buryak A.K., Zelikman V.M. // Catalysis in Industry. 2023. V. 15. № 2. P. 125. https://doi.org/10.18412/1816-0387-2022-4-43-50. doi: 10.1134/S2070050423020101.
  31. Akopyan A.V., Grishin N.N., Kardashev S.V., et al. // Theor. Found. Chem. Eng. 2024. V. 58. № 2. C. 323. https://doi.org/10.1134/S0040579524700532.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).