Peculiarities of corrosion of low-carbon steel in the flow of solutions of acids of different anionic composition containing iron(III) salts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Corrosion of low-carbon steel in solutions of HCl, HCl + H3PO4, and H3PO4 containing Fe(III) salts is studied. In the systems involved, the corrosion of steel results from its reaction with the acid solution and Fe(III) salt. In the discussed media, partial reactions of anodic ionization of iron, cathodic reduction of H+ and Fe(III) cations are realized on steel. The first two reactions are characterized by kinetic control, and the latter is characterized by diffusion control. The accelerating effect of Fe(III) cations on steel corrosion in the media studied is predominantly due to Fe(III) reduction. Binding of Fe(III) cations into complex compounds with anions of the corrosive medium reduces the value of their diffusion coefficient (DFe(III)). The value of DFe(III) is maximum in the HCl solution and minimum in the H3PO4 solution. The rate of partial cathodic reduction reaction of Fe(III) is determined by the value of DFe(III). As a result, the accelerating effect of Fe(III) on the cathodic reaction and, hence, the general corrosion of steel in the flow of aggressive medium is most significant in the HCl solution and least significant in the H3PO4 solution.

References

  1. Батраков В.В., Батраков В.П., Пивоварова Л.И., Соболь В.В. Коррозия конструкционных материалов. Газы и неорганические кислоты. Справочное издание. В двух книгах. Кн. 2. Неорганические кислоты. 2-е изд., перераб. и доп. М.: Интермет Инжиниронг, 2000. 320 с.
  2. Verma C., Quraishi M.A., Ebenso E.E. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 4. P. 1261. doi: 10.17675/2305-6894-2020-9-4-5.
  3. Meroufel A.A. / In: Corrosion and Fouling Control in Desalination Industry. Eds. V.S. Saji, A.A. Meroufel, A.A. Sorour. Springer. Cham. 2020. P. 209. doi: 10.1007/978-3-030-34284-5_10
  4. Авдеев Я.Г., Кузнецов Ю.И. // Журн. физ. химии. 2023. Т. 97. № 3. C. 305. doi: 10.31857/S0044453723030056. [Avdeev Ya.G., Kuznetsov Yu.I. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 413. doi: 10.1134/S0036024423030056].
  5. Finšgar M., Jackson J. // Corros. Sci. 2014. V. 86, P. 17. doi: 10.1016/j.corsci.2014.04.044.
  6. Avdeev Ya.G., Andreeva T.E., Panova A.V., Kuznetsov Yu.I. // Int. J. Corros. Scale Inhib. 2019. V. 8. № 1. P. 139. doi: 10.17675/2305-6894-2019-8-1-12.
  7. Авдеев Я.Г., Панова А.В., Андреева Т.Э. // Журн. физ. хим. 2023. Т. 97. № 5. C. 730. doi: 10.31857/S0044453723050059. [Avdeev Ya.G., Panova A.V., Andreeva T.E. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1018. doi: 10.1134/S0036024423050059].
  8. Richardson J.A., Bhuiyan M.S.H. / In: Reference Module in Materials Science and Materials Engineering. Elsevier, 2017. 21 p. doi: 10.1016/B978-0-12-803581-8.10372-8.
  9. Richardson J.A. / In: Shreir’s Corrosion. Eds. B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott. Elsevier. 2010. P. 1207. doi: 10.1016/B978-044452787-5.00197-9.
  10. Кузин А.В., Горичев И.Г., Шелонцев В.А., и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 2021. V. 62. № 6. С. 515. [Kuzin A.V., Gorichev I.G., Shelontsev V.A., et al. // Moscow Univ. Chem. Bull. 2021. V. 76. P. 398. doi: 10.3103/S0027131421060055].
  11. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. / Пер. с нем. под. ред. акад. Я.М. Колотыркина. М.: Металлургия, 1984. 132 с.
  12. Плетнев М.А., Решетников С.М. // Защита металлов. 2004. Т. 40. № 5. С. 513. [Pletnev M.A., Reshetnikov S.M. // Prot. Met. 2004. V. 40. P. 460—467. doi: 10.1023/B: PROM.0000043064.20548.e0]
  13. Антропов Л.И. Теоретическая электрохимия. М.: Высш. школа, 1965. С. 348.
  14. Bockris J.O’M., Drazic D., Despic A.R. // Electrochim. Acta. 1961. V. 4. № 2—4. P. 325. doi: 10.1016/0013-4686(61)80026-1.
  15. Chin R.J., Nobe K. // J. Electrochem. Soc. 1972. V. 119. P. 1457. doi: 10.1149/1.2404023.
  16. Florianovich G.M., Sokolova L.A.. Kolotyrkin Ya.M. // Electrochim. Acta. 1967. V. 12. № 7. P. 879. doi: 10.1016/0013-4686(67)80124-5.
  17. Решетников С.М., Макарова Л.Л. Окислительно-восстановительные и адсорбционные процессы на поверхности твердых металлов. Ижевск: Удмуртский гос. ун-т. 1979. С. 25.
  18. Авдеев Я.Г., Андреева Т.Э. // Журн. физ. химии. 2021. Т. 95. № 6. С. 885.doi: 10.31857/S0044453721060029. [Avdeev Ya.G., Andreeva T.E. // Russ. J. Phys. Chem. A. 2021. V. 95. № . 6. P. 1128. doi: 10.1134/S0036024421060029]
  19. Захаров В.А., Сонгина О.А., Бектурова Г.Б. // Журн. аналит. химии. 1976. Т. 31. № 11. С. 2212.
  20. Avdeev Ya.G., Andreeva T.E., Panova A.V., Yurasova E.N. // Int. J. Corros. Scale Inhib. 2019. V. 8. № 2. P. 411. doi: 10.17675/2305-6894-2019-8-2-18.
  21. Belqat B., Laghzizil A., Elkacimi K., et al. // J. of Fluorine Chem. 2000. V. 105. № 1. P. 1. doi: 10.1016/S0022-1139(00)00256-6.
  22. Techniques of electrochemistry: Electrode Processes. V. 1. / Eds.: E. Yeager and A.J. Salkind. New York: Published by John Wiley & Sons Inc, 1972. 592 p.
  23. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. С. 255.
  24. Strahm U., Patel R.C., Matijevic E. // J. Phys. Chem. 1979. V. 83. № 13. P. 1689. doi: 10.1021/j100476a003
  25. Kim, M.S., Kim, C.H. and Sohn, Y.S. // J. of the Korean Chemical Society. 1975. V. 19. № 5. P. 325.
  26. Wilhelmy R.B., Patel R.C., Matijevic E. // Inorg. Chem. 1985. V. 24. № 20. P. 3290. doi: 10.1021/ic00214a039
  27. Филатова Н.Л., Вендило А.Г., Санду Р.А. // Журн. неорг. химии. 2012. Т. 57. № 9. С. 1355. [Filatova L.N., Vendilo A.G., Sandu R.A. // Russ. J. Inorg. Chem. 2012. V. 57. № 9. P. 1272. doi: 10.1134/S0036023612090057]
  28. Плэмбек Дж. Электрохимические методы анализа. Пер. с англ. М.: Мир, 1985. 496 с.
  29. Авдеев Я.Г., Андреева Т.Э. // Журн. физ. химии. 2022. Т. 96. № 2. C. 281.doi: 10.31857/S0044453722020030. [Avdeev Ya.G., Andreeva T.E. // Russ. J. Phys. Chem. A. 2022. V. 96. № 2. P. 423. doi: 10.1134/S0036024422020030]
  30. Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986. 144 с.
  31. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. М: Наука, 1972. 344 с.
  32. Du C., Tan Q., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 171. doi: 10.1016/B978-0-444-63278-4.00005-7.
  33. Jia Z., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 199. doi: 10.1016/B978-0-444-63278-4.00006-9.
  34. Справочник химика. Т. 3. Химическое равновесие и кинетика. Свойства растворов. Электродные процессы. 2-е изд. / Под. ред. Б.П. Никольского. М.-Л.: Химия, 1965. С. 715.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».