Inhibitor protection of low carbon steel in the flow of sulfuric acid solution containing iron(III) sulfate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Corrosion of low-carbon steel in the flow of H2SO4 solutions containing Fe2(SO4)3, including media with additives of corrosion inhibitors, viz. catamine AB (a mixture of quaternary ammonium salts) and IFKhAN-92 (3-substituted derivative of 1,2,3-triazole) is studied. In the discussed medium, partial reactions of anodic ionization of iron, cathodic reduction of H+ and Fe(III) cations are realized on steel. The first two reactions are characterized by kinetic control, and the latter is characterized by diffusion control. The accelerating effect of Fe2(SO4)3 on the corrosion of steel in H2SO4 solution is mainly due to the reduction of Fe(III). In contrast, in an inhibited acid, the accelerating effect of Fe(III) cations affects all partial reactions of steel. The data on corrosion of low-carbon steel in the flow of the studied media obtained by mass loss of metal samples are in satisfactory agreement with the results of the study of partial electrode reactions. The accelerating effect of Fe2(SO4)3 on steel corrosion in the flow of H2SO4 solutions, including in the presence of inhibitors, is noted. In these media, steel corrosion is determined by the convective factor, which is characteristic of diffusion-controlled processes. Unlike catamine AB, the IFKhAN-92 inhibitor ensures a significant slowdown of steel corrosion in the flow of H2SO4 solution containing Fe2(SO4)3. The reason of higher inhibitor effects of IFKhAN-92 at protection of steel in the considered media as compared to catamine AB is that it slows down partial electrode reactions of metal more substantially.

Full Text

Restricted Access

About the authors

Ya. G. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Author for correspondence.
Email: avdeevavdeev@mail.ru
Russian Federation, 31-4, Leninsky prospect, 119071 Moscow

A. V. Panova

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Russian Federation, 31-4, Leninsky prospect, 119071 Moscow

T. E. Andreeva

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Russian Federation, 31-4, Leninsky prospect, 119071 Moscow

References

  1. Батраков В.В., Батраков В.П., Пивоварова Л.И., Соболь В.В. Коррозия конструкционных материалов. Газы и неорганические кислоты. Справочное издание. В двух книгах. Кн. 2. Неорганические кислоты. Изд. 2-е, перераб. и доп. М.: Интермет Инжиниринг, 2000. 320 с.
  2. Verma C., Quraishi M.A., Ebenso E.E. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 4. P. 1261–1276. https://doi.org/10.17675/2305-6894-2020-9-4-5
  3. Глущенко В.Н., Силин М.А. Нефтепромысловая химия: Изд. в 5-ти томах. – Т. 4. Кислотная обработка скважин / Под ред. И.Т. Мищенко. М.: Интерконтакт Наука, 2010. 703 c.
  4. Finšgar M., Jackson J. // Corros. Sci. 2014. V. 86. P. 17–41. https://doi.org/10.1016/j.corsci.2014.04.044
  5. Авдеев Я.Г., Панова А.В., Андреева Т.Э. // Журн. физ. химии. 2023. Т. 97. № 5. C. 730. https://doi.org/10.31857/S0044453723050059 [Avdeev Ya.G., Panova A.V., Andreeva T.E. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1018. https://doi.org/10.1134/S0036024423050059]
  6. Кузнецов Ю.И., Андреев Н.Н., Маршаков А.И. // Журн. физ. химии. 2020. Т. 94. № 3. C. 381. https://doi.org/10.31857/S0044453720030152. [Kuznetsov Yu.I., Andreev N.N., Marshakov A.I. // Ibid. 2020. V. 94. № 3. P. 505. https://doi.org/10.1134/S0036024420030152]
  7. Richardson J.A., Abdullahi A.A. / In: Reference Module in Materials Science and Materials Engineering. Elsevier, 2017. 24 p. https://doi.org/10.1016/B978-0-12-803581-8.10517-X
  8. Ouarga A., Zirari T., Fashu S. et al. // J. Mater. Res. Technol. 2023. V. 26. P. 5105. https://doi.org/10.1016/j.jmrt.2023.08.198
  9. Авдеев Я.Г., Ненашева Т.А., Лучкин А.Ю. и др. // Хим. физика. 2024. Т. 43. № 1. P. 24. https://doi.org/10.31857/S0207401X24010033 [Avdeev Ya.G., Nenasheva T.A., Luchkin A.Yu., Marshakov A.I., Kuznetsov Yu.I. // Russ. J. Phys. Chem. B. 2024. V. 18, P. 111. https://doi.org/10.1134/S1990793124010044]
  10. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. / Пер. с нем. под. ред. акад. Я.М. Колотыркина. М.: Металлургия, 1984. С. 76.
  11. Плетнев М.А., Решетников С.М. // Защита металлов. 2004. Т. 40. № 5. С. 513. [Pletnev M.A., Reshetnikov S.M. // Prot. Met. 2004. V. 40. P. 460. https://doi.org/10.1023/B:PROM.0000043064.20548.e0]
  12. Антропов Л.И. Теоретическая электрохимия. М.: Высш. школа, 1965. С. 348.
  13. Bockris J.O’M., Drazic D., Despic A.R. // Electrochim. Acta. 1961. V. 4. № 2–4. P. 325. https://doi.org/10.1016/0013-4686(61)80026-1
  14. Florianovich G.M., Sokolova L.A., Kolotyrkin Ya.M. // Electrochim. Acta. 1967. V. 12. № 7. P. 879. https://doi.org/10.1016/0013-4686(67)80124-5
  15. Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986. 144 с.
  16. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. М: Наука, 1972. 344 с.
  17. Du C., Tan Q., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 171. https://doi.org/10.1016/B978-0-444-63278-4.00005-7
  18. Jia Z., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 199–229. https://doi.org/10.1016/B978-0-444-63278-4.00006-9
  19. Краткий справочник физико-химических величин. / Под ред. К.П. Мищенко и А.А. Равделя. Л.: Химия, 1967. С. 103.
  20. Антропов Л.И., Погребова И.С. / Коррозия и защита от коррозии. Т. 2. (Итоги науки и техники). М.: ВИНИТИ, 1973. С. 27.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Polarization curves of a St3 steel disk in 2 M H2SO4 (a) inhibited by 10 mM catamin AB (b) and 10 mM IFCHAN-92 (c), in the presence of Fe(III) (mol/L): 1 - 0, 2 - 0.02, 3 - 0.05, 4 - 0.10, 5 - 0.20, n = 460 rpm.

Download (168KB)
3. Fig. 2. Dependences of cathodic current density on the rotation speed of a St3 steel disk in 2 M H2SO4 (a), inhibited by 10 mM catamin AB (b) and 10 mM IFCHAN-92 (c), in the presence of Fe(III) (mol/L): 1 - 0, 2 - 0.02, 3 - 0.05, 4 - 0.10, 5 - 0.20, E = -0.30 V, t = 25°C.

Download (136KB)
4. Fig. 3. Dependences of corrosion rate of steel St3 in 2 M H2SO4 containing Fe(III) on the propeller stirrer speed in corrosive medium, a - without inhibitor, b - 10 mM catamin AB, c - 10 mM IFCHAN-92. Duration of experiments - 2 h, t = 20±2°C.

Download (142KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».