Термодинамическое исследование полибромидных комплексов теллура

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Давление насыщенного и ненасыщенного пара Br2 над твердыми полибромтеллуратами состава (cation)2{[TeBr6](Br2)} (cation = Me4N+, Et4N+) измерено методом статической тензиметрии с мембранными нуль-манометрами в широком интервале температур. Из экспериментальных данных определена термическая стабильность этих соединений (Tразл), доказана физико-химическая модель парообразования, рассчитаны термодинамические характеристики процесса испарения брома, связывающего фрагменты анионов полибромтеллуратов (∆прT, ∆прT, lnp = f(T)), а также оценены энергии связи октаэдров [TeBr6] с Br2 (∆свG°T). Проведено сравнение полученных результатов с изученными ранее полибромидными комплексами висмута.

About the authors

Л. Н. Зеленина

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН; Новосибирский государственный университет

Author for correspondence.
Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск; Новосибирск

Т. П. Чусова

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН

Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск

Н. А. Коробейников

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН

Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск

А. Н. Усольцев

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН

Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск

References

  1. Pelletier, J., Caventou J. // Ann Chim Phys. 1819. V. 10. P. 142.
  2. Svensson P.H., Kloo L. // Chem. Rev. 2003. V. 103. No 5. P. 1649. https://doi.org/10.1021/cr0204101.
  3. Sonnenberg K., Mann L., Redeker F.A. et al. // Angew. Chemie — Int. Ed. 2020. V. 59. No 14. P. 5464. https://doi.org/10.1002/anie.201903197.
  4. Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. No 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10.
  5. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. No 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484.
  6. Korobeynikov N.A., Usoltsev A.N., Abramov P.A. et al. // Inorganics. 2023. V. 11. № 1. P. 25. https://doi.org/10.3390/inorganics11010025.
  7. Keil H., Sonnenberg K., Müller C. et al. // Angew. Chemie Int. Ed. 2021. V. 60. No 5. P. 2569. https://doi.org/10.1002/anie.202013727.
  8. Brückner R., Haller H., Steinhauer S. et al. // Ibid. 2015. V. 54. No 51. P. 15579. https://doi.org/10.1002/anie.201507948.
  9. Sonnenberg K., Pröhm P., Schwarze N. et al. // Ibid. 2018. V. 57. No 29. P. 9136. https://doi.org/10.1002/anie.201803486.
  10. Voßnacker P., Wüst A., Müller C. et al. // Ibid. 2022. V. 61. No 43. e202209684. https://doi.org/10.1002/anie.202209684.
  11. Korobeynikov N.A., Usoltsev A.N., Kolesov B.A. et al. // CrystEngComm. 2022. V. 24. No 17. P. 3150. https://doi.org/10.1039/D2CE00210H.
  12. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. No 7. P. 4077. https://doi.org/10.1021/acs.inorgchem.8b00265.
  13. Shestimerova T.A., Mironov A.V., Bykov M.A. et al. // Molecules. 2020. V. 25. No 12. P. 2765. https://doi.org/10.3390/molecules25122765.
  14. Bykov A.V., Shestimerova T.A., Bykov M.A. et al. // Int. J. Mol. Sci. 2023. V. 24. No 3. P. 2201. https://doi.org/10.3390/ijms24032201.
  15. Shestimerova T.A., Bykov M.A., Grigorieva A.V. et al. // Mendeleev Commun. 2022. V. 32. No 2. P. 194. https://doi.org/10.1016/j.mencom.2022.03.014.
  16. Shestimerova T.A., Golubev N.A., Bykov M.A. et al. // Molecules. 2021. V. 26. No 18. P. 5712. https://doi.org/10.3390/molecules26185712.
  17. Küttinger M., Loichet Torres P.A., Meyer E. et al. // Chem. — A Eur. J. 2022. V. 28. No 13. e202103491. https://doi.org/10.1002/chem.202103491.
  18. Küttinger M., Riasse R., Wlodarczyk J. et al. // J. Power Sources. 2022. V. 520. P. 230804. https://doi.org/10.1016/j.jpowsour.2021.230804.
  19. Wu W., Luo J., Wang F. et al. // ACS Energy Lett. 2021. V. 6. P. 2891. https://doi.org/10.1021/acsenergylett.1c01146.
  20. Usoltsev A.N., Adonin S.A., Novikov A.S. et al. // CrystEngComm. 2017. V. 19. No 39. P. 5934. https://doi.org/10.1039/C7CE01487B.
  21. Usoltsev A.N., Adonin S.A., Abramov P.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. No 27. P. 3264. https://doi.org/10.1002/ejic.150+273201800383.
  22. Zelenina L.N., Chusova T.P., Isakov A.V. et al. // J. Chem. Thermodyn. Elsevier Ltd, 2020. V. 141. P. 105958. https://doi.org/10.1016/j.jct.2019.105958.
  23. Суворов А.В. Термодинамическая химия парообразного состояния. Л.: «Химия», 1970. С. 46.
  24. Zelenina L.N., Chusova T.P., Vasilieva I.G. // JCT. 2013. V. 57. P. 101. http://dx.doi.org/10.1016/j.jct.2012.08.005.
  25. Зеленина Л.Н., Чусова Т.П., Сапченко С.А. и др. // ЖНХ. 2023. Т. 68. № 2. С. 174 (Zelenina L.N., Chusova T.P., Sapchenko S.A, Gelfond N.V. // Russian Journal of Inorganic Chemistry. 2023. V. 68. Р. 140) doi: 10.31857/S0044457X22601274.
  26. Титов В.А., Коковин Г.А. / Математические методы в химической термодинамике. Новосибирск: «Наука», 1980. С. 98.
  27. Гурвич Л.В. ИВТАНТЕРМО — автоматизированная система данных о термодинамических свойствах веществ // Вест. АН СССР. 1983. 3. С. 54. (L.V. Gurvich. IVTANTHERMO — Automated data system on thermodynamic properties of substances. Moscow: Nauka, 1983 (in Russian)).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies