Biocorrosion of Copper Under the Impact of Microscopic Fungi

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A study is performed of the micromycete biocorrosion of electrical copper M1E and fiberglass FR4 with copper coating, which are used in the production of printed circuit boards. The structure of the surfaces of corroded samples is studied via optical and electron microscopy. Energy dispersive X-ray spectroscopy is used to perform a qualitative and semi-quantitative analysis of chemical elements present in the composition of corrosion products after exposing samples to a bed of micromycetes. An X-ray phase analysis of the products of copper biocorrosion is performed. It is established that microorganisms adhere to the metal surface at the initial stage of micromycetic corrosion, and colonies of them develop. It is suggested that reactive oxygen species (superoxide anion-radical and hydrogen peroxide) participate in the biocorrosion of copper and the functioning of the zerovalent copper–hydrogen peroxide system, triggering a cascade of reactions that result in the destructive oxidation of copper. The role of biofilms of the microscopic fungal colony as the main factor in the mycological corrosion of copper is explained.

作者简介

D. Belov

Gaponov-Grekhov Institute of Applied Physics; Institute of Physics of Microstructures, Russian Academy of Sciences

Email: belov.denbel2013@yandex.ru
603950, Nizhny Novgorod, Russia; 603950, Nizhny Novgorod, Russia

S. Belyaev

Gaponov-Grekhov Institute of Applied Physics; Institute of Physics of Microstructures, Russian Academy of Sciences

Email: belov.denbel2013@yandex.ru
603950, Nizhny Novgorod, Russia; 603950, Nizhny Novgorod, Russia

P. Yunin

Institute of Physics of Microstructures, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: belov.denbel2013@yandex.ru
603950, Nizhny Novgorod, Russia

参考

  1. Okorie I.E., Chukwudi N.R. // Zastita Materijala. 2021. V. 62. № 4. P. 333. https://doi.org/10.5937/zasmat2104333O
  2. Picioreanu C., Loosdrecht M.V. // J. of The Electrochemical Society. 2002. V. 149. № 6. B211–B223. https://doi.org/10.1149/1.1470657
  3. Rather M.A., Gupta K., Mandal M. // Brazilian J. of Microbiology. 2021. V. 52. № 12. P. 1. https://doi.org/10.1007/s42770-021-00624-x
  4. Li X.L., Narenkumar J., Rajasekar A., Ting Y.-P. // 3 Biotech. 2018. V. 8. № 3. P. 178. https://doi.org/10.1007/s13205-018-1196-0
  5. Zhao J., Csetenyi L., Gadd G. // International Biodeterioration & Biodegradation. 2020. V. 154. 105081. https://doi.org/10.1016/j.ibiod.2020.105081
  6. Gharieb M.I., Ali M.I., El-Shoura A.A. // Biodegradation. 2004. V. 15. № 1. P. 49. https://doi.org/10.1023/B:BIOD.0000009962.48723.df
  7. Белов Д.В., Беляев С.Н., Геворгян Г.А., Максимов М.В. // Журн. физ. химии. 2022. Т. 96. № 8. С. 1075. DOI: . Belov D.V., Belyaev S.N., Gevorgyan G.A., Maksimov M.V. // Rus. J. of Physical Chemistry A. 2022. V. 96. № 8. P. 1599.https://doi.org/10.1134/S003602442208005210.1134/S0036024422080052.https://doi.org/10.31857/S0044453722080052
  8. Белов Д.В., Беляев С.Н. // Конденсированные среды и межфазные границы. 2022. Т. 24. № 2. С. 155. DOI: . Belov D.V., Belyaev S.N. // Condensed Matter and Interphases. 2022. V. 24. № 2. P. 155.https://doi.org/10.17308/kcmf.2022.24/9256.
  9. Белов Д.В., Челнокова М.В., Калинина А.А. и др. // Коррозия: материалы, защита. 2011. № 3. С. 19.
  10. Белов Д.В., Челнокова М.В., Соколова Т.Н. и др. // Изв. высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54. № 10. С. 133.
  11. Белов Д.В., Челнокова М.В., Соколова Т.Н. и др. // Коррозия: материалы, защита. 2009. № 11. С. 43.
  12. Коваль Э.З., Сидоренко Л.П. Микодеструкторы промышленных материалов. Киев: Наукова думка, 1989. 192 с.
  13. Ринальди М., Саттон Д., Фотергилл А. Определитель патогенных и условно патогенных грибов. М.: Мир. 2001. 486 с.
  14. Aruchamy A., Fujishima A. // J. Electroanal. Chem. 1989. V. 272. № 1–2. P. 125.
  15. Di Quarto F., Piazza S., Sunseri C. // Electrochim. Acta. 1985. V. 30. № 3. P. 315.
  16. Strehblow H.-H., Maurice V., Marcus P. // Electrochim. Acta. 2001. V. 46. P. 3755.
  17. Modestov A.D., Zhou G.-D., Ge H.-H., Loo B.H. // J. Electroanal. Chem. 1995. V. 380. № 1–2. P. 63.
  18. Bogdanowicz R., Ryl J., Darowicki K., Kosmowski B.B. // J. Solid State Electrochem. 2009. https://doi.org/10.1007/s10008-008-0650-z
  19. Wilhelm S. M., Tanizawa Y., Chang-Yi Liu, Hackerman N. // Corr. Sci. 1982. V. 22. № 8. P. 791.
  20. Chaudhary Y.S., Argaval A., Shrivastav R. et al. // Int. J. Hydrogen Energy. 2004. № 29. P. 131.
  21. Kublanovsky V.S., Kolbasov G.Ya., Belinskii V.N. // J. Electroanal. Chem. 1996. V. 415. P. 161.
  22. Kautek W., Gordon J.G. // J. Electrochem. Soc. 1990. V. 137. № 9. P. 2672.
  23. Shoesmith D.W., Rummery T.E., Owen D., Lee W. // J. Electrochem. Soc. 1976. V. 123. № 6. P. 790.
  24. Burke L.D., Ahern M.J.G., Ryan T.G. // Ibid. 1990. V. 137. № 2. P. 553.
  25. Abd El Halem S.M., Ateya B.G. // J. Electroanal. Chem. 1981. V. 117. № 2. P. 309.
  26. Ambrose J., Barradas R.G., Shoesmith D.W. // Ibid. 1973. V. 47. № 1. P. 65.
  27. Ives D.J.G., Rawson A.E. // J. of The Electrochemical Society. 1962. V. 109. № 6. P. 447. https://doi.org/10.1149/1.2425445
  28. Ives D.J.G., Rawson A.E. // Ibid. 1962. V. 109. № 6. P. 452. https://doi.org/10.1149/1.2425446.
  29. Ives D.J.G., Rawson A.E. // Ibid. 1962. V. 109. № 6. P. 458. https://doi.org/10.1149/1.2425447.
  30. Ives D.J.G., Rawson A.E. // Ibid.1962. V. 109. № 6. P. 462. https://doi.org/10.1149/1.2425448.
  31. Белов Д.В., Беляев С.Н., Максимов М.В., Геворгян Г.А. // Вопросы материаловедения. 2021. Т. 3. № 107. С. 163. DOI: . Belov D.V., Belyaev S.N., Maksimov M.V., Gevorgyan G.A. // Inorganic Materials: Applied Research. 2022. V. 13. № 6. P. 1640.https://doi.org/10.1134/S207511332206002810.1134/S2075113322060028.https://doi.org/10.22349/1994-6716-2021-107-3-163-183
  32. Ni Y.J., Cheng Y.Q., Xu M.Y., Qiu C.G. et al. // Huan jing ke xue= Huanjing kexue. 2019. V. 40. № 1. P. 293. https://doi.org/10.13227/j.hjkx.201803215
  33. Liu A., Liu J., Han J., Zhang W. // J. of Hazardous Materials. 2017. V. 322. P. 129. https://doi.org/10.1016/j.jhazmat.2015.12.070
  34. Ribeiro J.P., Nunes M.I. // Environmental Research. 2021. V. 197. 110957. https://doi.org/10.1016/j.envres.2021.110957
  35. Zhou P., Zhang J., Zhang Y. et al. // J. of Molecular Catalysis A: Chemical. 2016. V. 424. P. 115. https://doi.org/10.1016/j.molcata.2016.08.022
  36. Cheng M., Zeng G., Huang D. et al. // Chemical Engineering J. 2016. V. 284. P. 582. https://doi.org/10.1016/j.cej.2015.09.001
  37. Li B., Fan Y., Li C., Zhao X., Liu K., Lin Y. // Electroanalysis. 2018. V. 30. P. 1. https://doi.org/10.1002/elan.201700574
  38. Ensafi A.A., Abarghoui M.M., Rezaei B. // Electrochimica Acta. 2014. V. 123. P. 219. https://doi.org/10.1016/j.electacta.2014.01.031
  39. Elwell C.E., Gagnon N.L., Neisen B.D. et al. // Chemical Reviews. 2017. V. 117. № 3. P. 2059. https://doi.org/10.1021/acs.chemrev.6b00636
  40. Itoh S. // Accounts of Chemical Research. 2015. V. 48. № 7. P. 2066. https://doi.org/10.1021/acs.accounts.5b00140
  41. Bailey W.D., Dhar D., Cramblitt A.C., Tolman W.B. // J. of the American Chemical Society. 2019. V. 141. № 13. P. 5470. https://doi.org/10.1021/jacs.9b00466

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (1MB)
4.

下载 (136KB)
5.

下载 (146KB)
6.

下载 (145KB)
7.

下载 (140KB)
8.

下载 (149KB)
9.

下载 (137KB)
10.

下载 (163KB)
11.

下载 (194KB)
12.

下载 (205KB)
13.

下载 (176KB)
14.

下载 (1MB)
15.

下载 (4MB)
16.

下载 (1MB)
17.

下载 (2MB)
18.

下载 (1MB)
19.

下载 (1MB)
20.

下载 (1MB)
21.

下载 (75KB)

版权所有 © Д.В. Белов, С.Н. Беляев, П.А. Юнин, 2023

##common.cookie##