Fenton-Like Oxidation Systems for Destruction of Azo Dyes in Aqueous Solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The kinetic regularities of degradation of the azo dye methyl orange (MO) in photoinitiated oxidizing systems have been studied using a xenon lamp (UV–Vis) as a source of quasi-solar radiation. According to the efficiency and rate of dye destruction, the considered oxidizing systems can be arranged in the following series: {UV–Vis} < {UV–Vis/S2O2-8} < {S2O2-8/Fe0} < {UV–Vis/S2O2-8/Fe0} < {UV–Vis/S2O2-8/Fe2+}. It has been established that in photoinitiated Fenton-like oxidizing systems there is not only complete conversion of MO but also its deep mineralization in aqueous solution; a decrease in the content of total organic carbon reaches 60%. In this case, the specific catalytic activity of iron ions in the combined system {UV–Vis/S2O2-8/Fe0} is much higher than in {UV–Vis/S2O2-8/Fe2+}. Using inhibitors of radical reactions, it has been proved that in the combined system {UV–Vis/S2O2-8/Fe0} both hydroxyl and sulfate anion radicals take part in oxidative degradation. An inhibitory influence of anions (bicarbonates, chlorides, nitrates, and sulfates) and natural dissolved organic matter (Suwanee River 2R101N) on the process of mineralization of total organic carbon during oxidative destruction of MO in the combined system {UV–Vis/S2O
/Fe0} has been found.

Sobre autores

M. Sizykh

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Email: abat@binm.ru
Ulan-Ude, Russia

A. Batoeva

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: abat@binm.ru
Ulan-Ude, Russia

Bibliografia

  1. Han M., Wang H., Jin W. et al. // J. Environ. Sci. 2023. V. 128. P. 181. https://doi.org/10.1016/j.jes.2022.07.037
  2. Li L., Yuan X., Zhou Zh. et al. //J. Clean. Prod. V. 372. P. 133420. https://doi.org/10.1016/j.jclepro.2022.133420
  3. Ramos B., Ferreira L.B., Palharim P.H. et al. // Chem. Eng. J. Adv. 2023. V. 14. P. 100473. https://doi.org/10.1016/j.ceja.2023.100473
  4. Giannakis S., Samoili S., Rodríguez-Chueca J. // Curr. Opin. Green Sustain. Chem. 2021. V. 29. P. 100456. https://doi.org/10.1016/j.cogsc.2021.100456
  5. Linden K.G., Mohseni M. // Compr. Water Q. Purif. 2014. V. 2. P. 148.
  6. Karim A.V., Jiao Y., Zhou M., Nidheesh P. // Chemosphere. 2021. V. 265. P. 129057. https://doi.org/10.1016/j.chemosphere.2020.129057
  7. Ghanbari F., Moradi M., Gohari F. // J. Water Process. Eng. 2016. V. 9. P. 22. https://doi.org/10.1016/j.jwpe.2015.11.011
  8. Wang W., Chen M., Wang D. et al. // Sci. Total Environ. 2021. V. 772. P. 145522 https://doi.org/10.1016/j.scitotenv.2021.145522
  9. Zawadzki P. // Curr. Opin. Green Sustain. Chem. 2022. V. 37. P. 100837. https://doi.org/10.1016/j.coche.2022.100837
  10. Gao Y., Champagne P., Blair D. // Water Sci. Technol. 2020. V. 81. P. 853. https://doi.org/10.2166/wst.2020.190
  11. Khan J.A., He X., Khan H.M. // Chem. Eng. J. 2013. V. 218. P. 376. https://doi.org/10.1016/j.cej.2012.12.055
  12. Ahmed M.M., Chiron S. //Water Res. 2014. V. 48. P. 229. https://doi.org/10.1016/j.watres.2013.09.033
  13. Yang J., Zhu M., Dionysiou D.D. // Water Res. 2021. V. 189. P. 116627. https://doi.org/10.1016/j.watres.2020.116627
  14. Pozdnyakov I.P., Glebov E.M., Plyusnin V.F. et al. // Mendeleev Commun. 2020. V. 10. P. 185. https://doi.org/10.1070/MC2000v010n05ABEH001316
  15. Сизых М.Р., Батоева А.А. // Журн. физ. химии. 2019. Т. 93. № 12. С. 1773. (Sizykh M.R., Batoeva A.A. // Rus. J. Phys. Chem. A. 2019. V. 93. P. 2349.) https://doi.org/10.1134/S003602441912029X
  16. Ioannidi A., Frontistis Z., Mantzavinos D. // J. Environ. Chem. Eng. 2018. V. 6. P. 2992. https://doi.org/10.1016/j.jece.2018.04.049
  17. Rivas-Zaballos I., Romero-Martínez L., Moreno-Garrido I. // J. Water Process. Eng. 2023. V. 51. P. 103361. https://doi.org/10.1016/j.jwpe.2022.103361
  18. Omri A., Hamza W., Benzina M. // J. Photochem. Photobiol. A Chem. 2020. V. 393. P. 112444. https://doi.org/10.1016/j.jphotochem.2020.112444
  19. Li P., Liu Z., Wang X. et al. // Chemosphere. 2017. V. 180. P. 100. https://doi.org/10.1016/j.chemosphere.2017.04.019
  20. Zhang L., Xiao C., Li Z. et al. // Appl. Surf. Sci. 2023. V. 618. P. 156595. https://doi.org/10.1016/j.apsusc.2023.156595
  21. Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. https://doi.org/10.1016/j.cej.2020.128392
  22. Хандархаева М.С., Батоева А.А., Асеев Д.Г., Сизых М.Р. // Журн. прикл. химии. 2015. Т. 88. № 5. С. 1420 [Khandarkhaeva M.S., Batoeva A.A., Aseev D.G., Sizykh M.R. // Russ. J. Appl. Chem. 2015. V. 88. P. 1605.].
  23. Mengqi H., Hui W., Wei J. // J. Environ. Sci. (China). 2023. V. 128. P. 181. https://doi.org/10.1016/j.jes.2022.07.037
  24. Jiang X., Wu Y., Wang P. et al. // Environ. Sci. Pollut. Res. 2013. V. 20. P. 4947. https://doi.org/10.1007/s11356-013-1468-5
  25. Rodriguez S., Santos A., Romero A. // Chem. Eng. J. 2017. V. 318. P. 197. https://doi.org/10.1016/j.cej.2016.06.057
  26. Oh S.-Y., Kang S.-G., Chiu P.C. // Sci. Total Environ. 2010. V. 408. P. 3464. https://doi.org/10.1016/j.scitotenv.2010.04.032
  27. Liang C., Guo Y.Y. // Environ. Sci. Technol. 2010. V. 44. P. 8203. https://doi.org/10.1021/es903411a
  28. Michael-Kordatou I., Iacovou M., Frontistis Z. et al. // Water Res. 2015. V. 85. P. 346. https://doi.org/10.1016/j.watres.2015.08.050
  29. Li B., Li L., Lin K. et al. // Ultrason. Sonochem. 2013. V. 20. P. 855. https://doi.org/10.1016/j.ultsonch.2012.11.014
  30. Joseph J.M., Destaillats H., Hung H.M., Hoffman M.R. // J. Phys. Chem. A. 2000. Vol. 104. P. 301–307. https://doi.org/10.1021/jp992354m
  31. Ge D., Zeng Z., Arowo M., Zou H. // Chemosphere. 2016. V. 146. P. 413. https://doi.org/10.1016/j.chemosphere.2015.12.058
  32. Методика экспрессного определения интегральной химической токсичности питьевых, поверхностных, грунтовых, сточных и очищенных сточных вод с помощью бактериального теста “Эколюм”. Методические рекомендации № 01.021-07. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2007. 16 с.
  33. Wang L., Zhang Q., Chen B. et al. // Water Res. 2020. V. 174. P. 115605. https://doi.org/10.1016/j.watres.2020.115605
  34. Ghanbari F., Riahi M., Kakavandi B. et al. // J. Water Process. Eng. 2020. V. 36. P. 101321. https://doi.org/10.1016/j.jwpe.2020.101321
  35. Сизых М.Р., Батоева А.А., Мункоева В.А. // Журн. физ. хим. 2021. Т. 95. С. 947. (Sizykh M.R., Batoeva A.A., Munkoeva V.A. // Rus. J. Phys. Chem. A. 2021. V. 95. P. 1230.) https://doi.org/10.1134/S0036024421060236
  36. Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. https://doi.org/10.1016/j.cej.2020.128392
  37. Fang G.-D., Dionysiou D. D., Wang Y. et al. // J. Hazard. Mater. 2012. V. 227–228. P. 394. https://doi.org/10.1016/j.jhazmat.2012.05.074
  38. Luo C., Ma J., Jiang J. et al. // Water Res. 2015. V. 80. P. 99. https://doi.org/10.1016/j.watres.2015.05.019
  39. Yu X.-Y., Barker J.R. // J. Phys. Chem. A. 2003. V. 107. P. 1313. https://doi.org/10.1021/jp0266648
  40. Yang S., Zhang X., Tang J., Zhang A. // J. Environ. Chem. Eng. 2022. V. 10. P. 108806 https://doi.org/10.1016/j.jece.2022.108806
  41. Fan J., Guo Y., Wang J., Fan M. // J. Hazard. Mater. 2009. V. 166. P. 904. https://doi.org/10.1016/j.jhazmat.2008.11.091
  42. Basfar A.A., Mohamed K.A., Al-Abduly A.J., Al-Shahrani A.A. // Ecotoxicol. Environ. Saf., 2009. V. 72. P. 948. https://doi.org/10.1016/j.ecoenv.2008.05.006
  43. Garbin J.R., Milori D.M.B.P., Simões M.L., da Silva W.T et al. // Chemosphere. 2007. V. 66. P. 1692. https://doi.org/10.1016/j.chemosphere.2006.07.017

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (65KB)
3.

Baixar (78KB)
4.

Baixar (35KB)
5.

Baixar (119KB)
6.

Baixar (91KB)
7.

Baixar (88KB)

Declaração de direitos autorais © М.Р. Сизых, А.А. Батоева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies