Some Features of Quantitative Analysis of Surface Compounds by Laser Desorption Mass Spectrometry

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of quantitative analysis of widely used surface samples are shown. Corrosion damage to copper and steel surfaces can be analyzed quantitatively using cobalt chloride as the internal standard. The study also demonstrates the feasibility of comparative quantitative analysis of blue ink using methylene blue homologues as standards. When conducting quantitative analysis on surfaces with inhomogeneous morphology, it has been observed that direct analysis is not possible because of uneven ionization of the sample. It has been found that when analyzing such surfaces, it is necessary to exclude points with a low signal-to-noise ratio from consideration. The work highlights the extensive possibilities of utilizing quantitative analysis in mass spectrometric visualization of the surface. The work is aimed at demonstrating the capabilities of the laser desorption mass spectrometric method for analyzing the surfaces of various materials, which will make this method universal for searching for a wide range of contaminants on the surface of materials of various nature.

Sobre autores

I. Pytskii

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: ivanpic4586@gmail.com
119991, Moscow, Russia

E. Kuznetsova

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: ivanpic4586@gmail.com
119991, Moscow, Russia

A. Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry

Autor responsável pela correspondência
Email: ivanpic4586@gmail.com
119991, Moscow, Russia

Bibliografia

  1. Picó Y. // Curr. Opin. Environ. Sci. 2020. T. 18. № 1. C. 47.
  2. Feider C.L., Krieger A., DeHoog R.J., Eberlin L.S. // Anal. chem. 2019. T. 91. № 7. C. 4266.
  3. Ural N. Open Geosci. 2021. T. 13. № 4. C. 197.
  4. Khan H., Yerramilli A.S., D’Oliveira A. et al. // Can. J. Chem. Eng. 2020. T. 98. № 6. C. 1255.
  5. Wójtowicz A., Wietecha-Posłuszny R. // Appl. Phys. A. 2019. T. 125. № 1. C. 1.
  6. Hong Y., Birse N., Quinn B. et al. // J. Food Sci. 2022. T. 6. № 9. C. 14.
  7. Hou T.Y., Chiang-Ni C., Teng S.H.J. // Food Drug Anal. 2019. T. 27. № 2. C. 404.
  8. Welker M., Van Belkum A., Girard V. et al. // Expert Rev. Proteomics. 2019. T. 16. № 9. C. 695.
  9. Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. T. 92. № 3. C. 1227.
  10. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. T. 95. № 11. C. 2319.
  11. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Ibid. 2022. T. 96. № 10. C. 2215.
  12. Minenkova I.V., Pytskii I.S., Buryak A.K. // Prot. Met. Phys. Chem. Surf. 2022. T. 58. № 6. C. 605.
  13. Schulz S., Becker M., Groseclose M.R. et al. // Curr. Opin. Biotechnol. 2019. T. 55. № 2. C. 51.
  14. Hendel K.K., Bagger C., Olesen U.H. et al. // Drug deliv. 2019. T. 26. № 1. C. 244.
  15. Morosi L., Matteo C., Meroni M. et al. // Talanta. 2022. T. 237. № 1. C. 122918.
  16. Iartsev S.D., Pytskii I.S., Zenkevich I.G., Buryak A.K. // J. Anal. Chem. 2017. T. 72. № 6. C. 624.
  17. Ibrahim S., Froehlich B.C., Aguilar-Mahecha A. et al. // Anal. Chem. 2020. T. 92. № 18. C. 12407.
  18. Rzagalinski I., Volmer D.A. et al. Biochim. Biophys. Acta Proteins Proteom. 2017. T. 1865. № 11. C. 726.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (42KB)
3.

Baixar (44KB)
4.

Baixar (49KB)
5.

Baixar (179KB)
6.

Baixar (69KB)
7.

Baixar (86KB)

Declaração de direitos autorais © И.С. Пыцкий, Е.С. Кузнецова, А.К. Буряк, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies