Effect of the Pore Structure of Nanosilicas Decorated with Cobalt and Cerium Oxides on Catalytic Activity in the Selective Oxidation of Carbon Monoxide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Two types of nanosilicas with different pore structures are synthesized and decorated via impregnation with cobalt and cerium oxides. Meso–microporous spherical silica particles with thin walls of SiO2 nanochannels having specific surface area and pore volume of up to 1400 m2/g and 0.8 cm3/g, respectively, are used. Macroporous three-dimensionally ordered structures based on SiO2 (so-called synthetic opals) consisting of close-packed submicron spherical silica particles with respective porosity characteristics of 11 m2/g and 0.2 cm3/g are also used. The synthesized materials are characterized via low-temperature nitrogen adsorption, X-ray diffraction, SEM, XPS, and Fourier transform IR spectroscopy, and tested as catalysts for the selective oxidation of CO in excess H2 (CO-PROX). The effect of silica, the ratio of introduced oxides, and the order of their introduction on the structure and catalytic properties of Co–Ce/SiO2 are revealed. The catalytic behavior of the synthesized materials is determined from the specificity of interactions among the metal oxides and with the silica surface.

作者简介

T. Rostovshchikova

Faculty of Chemistry, Lomonosov Moscow State University

Email: rtn@kinet.chem.msu.ru
119991, Moscow, Russia

D. Eurov

Ioffe Institute, Russian Academy of Sciences

Email: rtn@kinet.chem.msu.ru
194021, St. Petersburg, Russia

D. Kurdyukov

Ioffe Institute, Russian Academy of Sciences

Email: rtn@kinet.chem.msu.ru
194021, St. Petersburg, Russia

M. Tomkovich

Ioffe Institute, Russian Academy of Sciences

Email: rtn@kinet.chem.msu.ru
194021, St. Petersburg, Russia

M. Yagovkina

Ioffe Institute, Russian Academy of Sciences

Email: rtn@kinet.chem.msu.ru
194021, St. Petersburg, Russia

I. Ivanin

Faculty of Chemistry, Lomonosov Moscow State University

Email: rtn@kinet.chem.msu.ru
119991, Moscow, Russia

K. Maslakov

Faculty of Chemistry, Lomonosov Moscow State University

Email: rtn@kinet.chem.msu.ru
119991, Moscow, Russia

O. Udalova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: rtn@kinet.chem.msu.ru
119991, Moscow, Russia

M. Shilina

Faculty of Chemistry, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: rtn@kinet.chem.msu.ru
119991, Moscow, Russia

参考

  1. Farrando-Perez J., Lopez C., Silvestre-Albero J., Gallego-Gómez F. // J. Phys. Chem. 2018. V. 122. P. 22008. https://doi.org/10.1021/acs.jpcc.8b07278
  2. Meletov K.P., Efimchenko V.S., Korotkova M.A. et al. // Int. J. Hydrogen Energy. 2023. https://doi.org/10.1016/j.ijhydene.2022.12.297
  3. Deepanjali Gautam K., Ullas A.V. // Mater. Today: Proc. 2023. V. 74. Part 4. P. 713. https://doi.org/10.1016/j.matpr.2022.10.281
  4. Walcarius A., Mercier L. // J. Mater. Chem. 2010. V. 20. P. 4478–4511. https://doi.org/10.1039/B924316J
  5. Qiang T., Zhu R. // Sci. Total Environ. 2022. V. 819. P. 152929. https://doi.org/10.1016/j.scitotenv.2022.152929
  6. He Q., Shi J. // Adv. Mater. 2014. V. 26. P. 91. https://doi.org/10.1002/adma.201303123
  7. Gisbert-Garzarán M., Lozano D., Matsumoto K. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 9656–9666.
  8. Majeed S., Nawaz R., Rasheed T., Bilal M. Micro and nano technologies, nanomaterials for biocatalysis, Chapter 6 – Silica-based nanomaterials in biocatalysis, Elsevier, 2022. P. 171.
  9. Muñoz-Pina S., Amorós P., El Haskouri J. et al. // Nanomaterials. 2020. V. 10. P. 1927. https://doi.org/10.3390/nano10101927
  10. Kumar A., Madden D.G., Lusi M. et al. // Angew. Chem. Int. Ed. Engl. 2015. V. 54. P. 14372. https://doi.org/10.1002/anie.201506952
  11. Zhao D., Wan Y., Zhou W. Ordered Mesoporous Materials. Wiley, 2013. P. 523.
  12. Huirache-Acuña R., Nava R., Peza-Ledesma C.L. et al. // Materials. 2013. V. 6. P. 4139. https://doi.org/10.3390/ma6094139
  13. Verma P., Kuwahara Y., Mori K. et al. // Nanoscale. 2020. V. 12. P. 11333. https://doi.org/10.1039/D0NR00732C
  14. Ribeiro P.C., Kiminami R.H.G.A., Costa A.C.F.M. // Ceram. 2014. V. 40. P. 2035. https://doi.org/10.1016/j.ceramint.2013.07.115
  15. Xantini Z., Erasmus E. // Polyhedron. 2021. V. 193 P. 114769. https://doi.org/10.1016/j.poly.2020.114769
  16. Chong C.C., Cheng Y.W., Bahari M.B. et al. // Int. J. Hydrog. Energy. 2021. V. 46. P. 24687. https://doi.org/10.1016/j.ijhydene.2020.01.086
  17. Liu Y., Wang Z., Zhao W. et al. // Chem. Eng. J. 2023. V. 455. P. 140622. https://doi.org/10.1016/j.cej.2022.140622
  18. Jiang X., Tang X., Tang L. et al. // Ceram. 2019. V 45. P. 7673. https://doi.org/10.1016/j.ceramint.2019.01.067
  19. Еуров Д.А., Кириленко Д.А., Томкович М.В. и др. // Неорган. материалы. 2022. Т. 58. № 12. С. 1404. https://doi.org/10.31857/S0002337X22120077
  20. Курдюков Д.А., Певцов А.Б., Смирнов А.Н. и др. // ФТТ. 2016. Т. 58. № 6. С. 1176. https://doi.org/10.1134/S1063783416060275
  21. Трофимова Е.Ю., Алексенский А.Е., Грудинкин С.А. и др. // Коллоид. журн. 2011. Т. 73. № 4. С. 535. https://doi.org/10.1134/S1061933X11040156
  22. Еуров Д.А., Кириленко Д.А., Томкович М.В. и др. // Неорган. материалы. 2021. Т. 57. № 9. С. 954. https://doi.org/10.31857/S0002337X21090050
  23. Eurov D.A., Rostovshchikova T.N., Shilina M.I. et al. // Appl. Surf. Sci. 2022. V. 579. P. 152121. https://doi.org/0.1016/j.apsusc.2021.152121
  24. Freund H.-J., Meijer G., Scheffler M. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 10064. https://doi.org/10.1002/anie.201101378
  25. Royer S., Duprez D. // ChemCatChem. 2011. V. 3. № 1. P. 24. https://doi.org/10.1002/cctc.201000378
  26. Jing P., Gong X., Liu B., Zhang J. // Catal. Sci. Technol. 2020. № 10. P. 919. https://doi.org/10.1039/C9CY02073J
  27. Marino F., Descorme C., Duprez D. // Appl. Catal. B. 2005. V. 58. P. 175. https://doi.org/10.1016/j.apcatb.2004.12.008
  28. Arango-Diaz A., Cecilia J.A., Marrero-Jerez J. et al. // Ceram. 2016. V. 46. P. 7462. https://doi.org/10.1016/j.ceramint.2016.01.151
  29. Gawade P., Bayram B., Alexander A.-M.C., Ozkan U.S. // Appl. Catal. B. 2012. V. 128. P. 21. https://doi.org/10.1016/j.apcatb.2012.06.032
  30. Zhang L., Zhang L., Xu G. et al. // New J. Chem. 2017. V. 41. P. 13418. https://doi.org/10.1039/c7nj02542d
  31. Shilina M., Udalova O., Krotova I. et al. // ChemCatChem. 2020. V. 12. P. 2556. https://doi.org/10.1002/cctc.201902063
  32. Ivanin I.A., Krotova I.N., Udalova O.V. et al. // Kin. Cat. 2021. V. 62. P. 798. https://doi.org/10.1134/S0023158421060082
  33. Kaplin I.Y., Lokteva E.S., Maslakov K.I. et al. // Appl. Sur. Sci. 2022. V. 594. P. 153473. https://doi.org/10.1016/j.apsusc.2022.153473
  34. Тетерин Ю.А., Соболев А.В., Белик А.A. и др. // ЖЭТФ. 2019. Т. 155. № 6. С. 1061. https://doi.org/10.1134/S0044451019060105
  35. Medvedeva A., Makhonina E., Pechen L. et al. // Materials. 2022. V. 15. № 22. P. 8225. https://doi.org/10.3390/ma15228225
  36. Qiao L., Xiao H.Y., Meyer H.M. et al. // J. Mater. Chem. C. 2013. V. 1. № 31. P. 4628. https://doi.org/10.1039/C3TC30861H
  37. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. С. 310.
  38. Kurdyukov D.A., Chernova E.N., Russkikh Y.V. et al. // J. Chromatogr. A. 2017. V. 1513. P. 140. https://doi.org/10.1016/j.chroma.2017.07.043
  39. Kurdyukov D.A., Eurov D.A., Kirilenko D.A. et al. // Microporous Mesoporous Mater. 2016. V. 223. P. 225. https://doi.org/10.1016/j.micromeso.2015.11.018
  40. Киселев А.В., Лыгин В.И. Инфракрасные спектры поверхностных соединений. М.: Наука, 1972. С. 459.
  41. Wang Y.-Z., Zhao Y.-X., Gao C.-G., Liu D.-S. // Catal. Lett. 2007. V. 116. P. 136. https://doi.org/10.1007/s10562-007-9099-4
  42. Tang C.-W., Wang C.-B., Chien S.-H. // Termochim. Acta. 2008. V. 473. № 1–2. P. 68. https://doi.org/10.1016/j.tca.2008.04.015
  43. Hou X.-D., Wang Y.-Z., Zhao Y.-X. // Catal. Lett. 2008. V. 123. P. 321. https://doi.org/10.1007/s10562-008-9426-4
  44. Lukashuk L., Föttinger K., Kolar E. et al. // J. Catal. 2016. V. 344. P. 1. https://doi.org/10.1016/j.jcat.2016.09.002
  45. Химия привитых поверхностных соединений / Под ред. Г.В. Лисичкина. М.: Физматлит, 2003. С. 49.
  46. Puskas I., Fleisch T.H., Hall J.B. et al. // J. Catal. 1992. V. 134. № 2. P. 615. https://doi.org/10.1016/0021-9517(92)90347-K
  47. Tiscornia I.S., Lacoste A.M., Gomez L.E. et al. // Int. J. Hydrog. Energy. 2020. V. 45. № 11. P. 6636. https://doi.org/10.1016/j.ijhydene.2019.12.126

补充文件

附件文件
动作
1. JATS XML
2.

下载 (987KB)
3.

下载 (160KB)
4.

下载 (102KB)
5.

下载 (384KB)
6.

下载 (148KB)
7.

下载 (156KB)
8.

下载 (112KB)

版权所有 © Т.Н. Ростовщикова, Д.А. Еуров, Д.А. Курдюков, М.В. Томкович, М.А. Яговкина, И.А. Иванин, К.И. Маслаков, О.В. Удалова, М.И. Шилина, 2023

##common.cookie##