Hydrogenation of S6-C60(CF3)12

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The first results of the hydrogenation of S6-symmetric trifluoromethylfullerene C60(CF3)12 in two types of reactions were reported: (1) high-temperature radical hydrogenation with 9,10-dihydroanthracene and (2) nucleophilic hydrogenation with sodium tetraborohydride under mild conditions. The high-temperature radical hydrogenation of S6-C60(CF3)12 is accompanied by partial elimination of CF3 groups and leads to the formation of a complex mixture of products of a composition C60(CF3)8–12H18–22. During the hydrogenation of NaBH4 under mild conditions, selective formation of the hydride C60(CF3)12H12 was recorded by mass spectroscopy. A kinetic analysis of the sequential nucleophilic hydrogenation of S6-C60(CF3)12 was performed, using quantum-chemical modeling at the level of density functional theory, under the assumption of linear correlation between the activation energy and the enthalpy of elementary steps of the same type. The isomeric composition was predicted for the series of anionic intermediates C60(CF3)12H−2n−12−1− and their protonation products C60(CF3)12H2n, where n = 1–6. The hydrogenation of S6-C60(CF3)12 should lead to the formation of the thermodynamically and kinetically most stable product ortho-S6-C60(CF3)12H12, in which all hydrogen atoms are located in neighboring positions near the CF3 groups, forming together with them a near-equatorial belt of 24 addends while retaining the triphenylene fragments at two opposite poles. The average bond dissociation energy BDE(C–H) in ortho-S6-C60(CF3)12H12 is 298 kJ mol–1, which is approximately 20 kJ mol–1 higher than the BDE(C–H) of known fullerene hydrides C60H18 and C60H36 (PBE0/def2-SVP).

Sobre autores

N. Romanova

Faculty of Chemistry, Moscow State University

Email: natroman1987@yandex.ru
119991, Moscow, Russia

V. Markov

Faculty of Chemistry, Moscow State University

Email: natroman1987@yandex.ru
119991, Moscow, Russia

A. Goryunkov

Faculty of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: natroman1987@yandex.ru
119991, Moscow, Russia

Bibliografia

  1. Гольдшлегер Н.Ф., Моравский А.П. // Успехи химии. 1997. Т. 66. № 4. С. 353.
  2. Nossal J., Saini R.K., Alemany L.B. et al. // Eur. J. Org. Chem. 2001. P. 4167.
  3. Taylor R. // J. Fluorine Chem. 2004. V. 125. P. 359.
  4. Горюнков А.А., Овчинникова Н.С., Трушков И.В. и др. // Успехи химии. 2007. Т. 76. С. 323.
  5. Troyanov S.I., Kemnitz E. // Curr. Org. Chem. 2012. V. 16. P. 1060.
  6. Troyanov S.I., Dimitrov A., Kemnitz E. // Angew. Chem. Int. Ed. 2006. V. 45. P. 1971.
  7. Troyanov S.I., Kemnitz E. // Mendeleev Commun. 2008. V. 18. P. 27.
  8. Berseth P.A., Harter A.G., Zidan R. et al. // Nano Lett. 2009. V. 9. № 4. P. 1501.
  9. Scheicher R.H., Li S., Araujo C.M. et al. // Nanotechnology. 2011. V. 22. № 33. P. 335401.
  10. Броцман В.А., Луконина Н.С., Горюнков А.А. // Изв. АН. Сер. хим. 2023. Т. 72. № 1. С. 20.
  11. Rybalchenko A.V., Magdesieva T.V., Brotsman V.A. et al. // Electrochim. Acta. 2015. V. 174. P. 143.
  12. Bogdanov V.P., Semivrazhskaya O.O., Belov N.M. et al. // Chem. Eur. J. 2016. V. 22. P. 15485.
  13. Brotsman V.A., Bogdanov V.P., Rybalchenko A.V. et al. // Chem. Asian J. 2016. V. 11. № 13. P. 1945.
  14. Powell W.H., Cozzi F., Moss G.P. et al. // Pure Appl. Chem. 2002. V. 74. P. 629.
  15. Duan Y.Y., Shi L., Sun L.Q. et al. // Int. J. Thermophys. 2000. V. 21 (2). P. 393.
  16. Banfi L., Narisano E., Riva R. et al. // Encyclopedia of Reagents for Organic Synthesis. Chichester, UK: John Wiley & Sons, Ltd, 2014. P. 1.
  17. Rackers J.A., Wang Z., Lu C. et al. // J. Chem. Theory Comput. 2018. V. 14. № 10. P. 5273.
  18. Granovsky A.A. Firefly v. 8.2.0 (Formerly PC GAMESS). 2016. http://classic.chem.msu.su/gran/firefly/index.html
  19. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
  20. Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. P. 151.
  21. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  22. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  23. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  24. Ignat’eva D.V., Goryunkov A.A., Ioffe I.N. et al. // J. Phys. Chem. A. 2013. V. 117. P. 13009.
  25. Romanova N.A., Papina T.S., Luk’yanova V.A. et al. // J. Chem. Thermodyn. 2013. V. 66. P. 59.
  26. Tebbe F.N., Harlow R.L., Chase D.B. et al. // Science. 1992. V. 256. P. 822.
  27. Pimenova S.M., Melkhanova S.V., Kolesov V.P. et al. // J. Phys. Chem. B. 2002. V. 106. P. 2127.
  28. Papina T., Luk’yanova V., Troyanov S. et al. // Russ. J. Phys. Chem. A. 2007. V. 81. P. 159.
  29. Rüchardt C., Gerst M., Ebenhoch J. et al. // Angew. Chem. Int. Ed. 1993. V. 32. P. 584.
  30. Darwish A.D., Avent A.G., Taylor R. et al. // J. Chem. Soc., Perkin Trans. 2. 1996. P. 2051.
  31. Gakh A.A., Romanovich A.Y., Bax A. // J. Am. Chem. Soc. 2003. V. 125. № 26. P. 7902.
  32. Rüchardt C., Gerst M., Nölke M. // Angew. Chem. Int. Ed. Engl. 1992. V. 31. № 11. P. 1523.
  33. Wang G.-W., Li Y.-J., Li F.-B. et al. // Lett. Org. Chem. 2005. V. 2. P. 595.
  34. Markov V.Y., Borschevsky A.Y., Sidorov L.N. // Int. J. Mass Spectrom. 2012. V. 325–327. P. 100.
  35. Khatymov R.V., Markov V.Y., Tuktarov R.F. et al. // Ibid. 2008. V. 272. P. 119.
  36. Khatymov R.V., Tuktarov R.F., Markov V.Y. et al. // JETP Letters. 2013. V. 96. P. 659.
  37. Romanova N.A., Tamm N.B., Markov V.Y. et al. // Mendeleev Commun. 2012. V.22. P. 297.
  38. Kosaya M.P., Yankova T.S., Rybalchenko A.V. et al. // J. Phys. Chem. A. 2021. V. 125. P. 7876.
  39. Lavrent'eva O.N., Romanova N.A. // Abstracts of Invited Lectures & Contributed Papers. St. Petersburg, Russia, 2015. P. 77.
  40. Çelikkan H., Şahin M., Aksu M.L. et al. // Int. J. Hydrog. Energy. 2007. V. 32. № 5. P. 588.
  41. Spielmann H.P., Wang G.-W., Meier M.S. et al. // J. Org. Chem. 1998. V. 63. P. 9865.
  42. Spielmann H.P., Weedon B.R., Meier M.S. // Ibid. 2000. V. 65. P. 2755.
  43. Clare B.W., Kepert D.L. // J. Mol. Struct. Theochem. 1994. V. 315. P. 71.
  44. Clare B.W., Kepert D.L. // Ibid. 2003. V. 621. P. 211.
  45. Clare B.W., Kepert D.L. // Ibid. 2003. V. 622. P. 185.
  46. Kepert D.L., Clare B.W. // Coord. Chem. Rev. 1996. V. 155. P. 1.
  47. Clare B.W., Kepert D.L. // J. Mol. Struct. Theochem. 1994. V. 303. P. 1.
  48. Boltalina O.V., Markov V.Y., Taylor R. et al. // Chem. Commun. 1996. V. 22. P. 2549.
  49. Clare B.W., Kepert D.L. // J. Mol. Struct. 2001. V. 536. P. 99.
  50. Boltalina O.V., Markov V.Y., Troshin P.A., et al. // Angew. Chem. Int. Ed. 2001. V. 40. № 4. P. 787.
  51. Popov A.A., Goryunkov A.A., Goldt I.V. et al. // J. Phys. Chem. A. 2004. V. 108. P. 11449.
  52. Shustova N.B., Mazej Z., Chen Y.-S. et al. // Angew. Chem. Int. J. 2010. V. 49. P. 812.
  53. Boltalina O.V., Goryunkov A.A., Markov V.Y. et al. // Int. J. Mass Spectrom. 2003. V. 228. P. 807.
  54. Lier G.V., Cases M., Ewels C.P. et al. // J. Org. Chem. 2005. V. 70. P. 1565.
  55. Ewels C.P., Van Lier G., Geerlings P. et al. // J. Chem. Inf. Model. 2007. V. 47. № 6. P. 2208.
  56. Dorozhkin E.I., Ignat’eva D.V., Tamm N.B. et al. // Chem. Eur. J. 2006. V. 12. P. 3876.
  57. Dorozhkin E.I., Goryunkov A.A., Ioffe I.N. et al. // Eur. J. Org. Chem. 2007. P. 5082.
  58. Belov N.M., Apenova M.G., Rybalchenko A.V. et al. // Chem. Eur. J. 2014. V. 20. P. 1126.
  59. Tamm N.B., Fritz M.A., Romanova N.A. et al. // ChemistrySelect. 2022. V. 7. № 44. https://doi.org/10.1002/slct.202202214
  60. Tamm N.B., Fritz M.A., Romanova N.A. et al. // ChemistrySelect. 2022. V. 7. № 19. https://doi.org/10.1002/slct.202200968
  61. Романова Н.А., Фритц М.А., Чанг К. и др. // Изв. АН. Сер. хим. 2014. P. 2657.
  62. Romanova N.A., Fritz M.A., Chang K. et al. // Chem. Eur. J. 2013. V. 19. P. 11707.
  63. Troyanov S.I., Goryunkov A.A., Dorozhkin E.I. et al. // J. Fluor. Chem. 2007. V. 128. P. 545.
  64. Samokhvalova N.A., Khavrel P.A., Markov V.Y. et al. // Eur. J. Org. Chem. 2009. P. 2935.
  65. Kosaya M.P., Rybalchenko A.V., Lukonina N.S. et al. // Chem. Asian J. 2018. V. 13. № 15. P. 1920.
  66. Khavrel P.A., Serov M.G., Petukhova G.G. et al. // J. Fluor. Chem. 2020. P. 109598.
  67. Apenova M.G., Semivrazhskaya O.O., Borkovskaya E.V. et al. // Chem. Asian J. 2015. V. 10. P. 1370.
  68. Ovchinnikova N.S., Goryunkov A.A., Khavrel P.A. et al. // Dalton Trans. 2011. V. 40. P. 959.
  69. Wigfield D.C. // Tetrahedron. 1979. V. 35. № 4. P. 449.
  70. Bergosh R.G., Meier M.S., Laske Cooke J.A. et al. // J. Org. Chem. 1997. V. 62. P. 7667.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (628KB)
3.

Baixar (404KB)
4.

Baixar (121KB)
5.

Baixar (128KB)
6.

Baixar (21KB)
7.

Baixar (18KB)
8.

Baixar (140KB)
9.

Baixar (266KB)
10.

Baixar (768KB)

Declaração de direitos autorais © Н.А. Романова, В.Ю. Марков, А.А. Горюнков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies