Electrocatalytic Reduction of CO2 when Using N-Substituted Salts of 2,4,6-Triphenylpyridine

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A study is performed of the electrocatalytic activity of substituted pyridine salts (N-hydro-, N‑methyl-, and N-phenyl-2,4,6-triphenylpyridinium perchlorates) in the electroreduction of carbon dioxide to carbon monoxide. The effect the natures of the substituent and the H+ source have on the efficiency of the process is determined. The main reasons for the occurrence of the electrocatalytic process are identified, and the values of TOF (catalyst speed) and TON (number of revolutions of the catalyst) are calculated. It is shown that the values of TOF and TON fall as the pK of the acid rises.

作者简介

A. Knyazev

Lobachevsky State University

Email: dolganov_sasha@mail.ru
Россия, Н.-Новгород

A. Dolganov

Ogarev Mordovian State University

Email: dolganov_sasha@mail.ru
430005, Saransk, Russia

L. Klimaeva

Ogarev Mordovian State University

Email: dolganov_sasha@mail.ru
430005, Saransk, Russia

S. Kostryukov

Ogarev Mordovian State University

Email: dolganov_sasha@mail.ru
430005, Saransk, Russia

A. Kozlov

Ogarev Mordovian State University

Email: dolganov_sasha@mail.ru
430005, Saransk, Russia

A. Yudina

Ogarev Mordovian State University

Email: dolganov_sasha@mail.ru
430005, Saransk, Russia

O. Tarasova

Ogarev Mordovian State University

编辑信件的主要联系方式.
Email: dolganov_sasha@mail.ru
430005, Saransk, Russia

参考

  1. Liu J.-L., Wang X., Li X.-S. et al. // J. Phys. D: Appl. Phys. 2020. V. 53. № 25. P. 253001.https://doi.org/10.1088/1361-6463/ab7c04
  2. Jenkinson D.S., Adams D.E., Wild A. // Nature. 1991. V. 351. № 6324. P. 304. https://doi.org/10.1038/351304a0.
  3. Weimer T., Schaber K., Specht M. et al. // Energy Conversion and Management/ 1996. V. 370020 № 6–8. P. 1351.https://doi.org/10.1016/0196-8904(95)00345-2
  4. Ren S., Joulié D., Salvatore D. // Science. 2019. V. 365. № 6451. P. 367.https://doi.org/10.1126/science.aax4608
  5. Jin S., Hao Z., Zhang K. // Angewandte Chemie. 2021. V. 133. № 38. P. 20795.https://doi.org/10.1002/ange.202101818
  6. Nielsen D.U., Hu X.-M. // Nat. Catal. 2018. V. 1. № 4. P. 244.https://doi.org/10.1038/s41929-018-0051-3
  7. Hori Y., Wakebe H., Tsukamoto T. et al. // Electrochimica Acta. 1994. № 39. № 11–12. P. 1833.https://doi.org/10.1016/0013-4686(94)85172-7
  8. Gao X., Liang J., Wu L. et al. // Catalysts. 2022. V. 12. № 1. P. 66.https://doi.org/10.3390/catal12010066
  9. Frontera P., Macario A., Ferraro M. et al. // Catalysts. 2017. V. 7. № 12. P. 59.https://doi.org/10.3390/catal7020059
  10. Mikhail M., Wang B., Jalain R. et al. // Reac. Kinet. Mech. Cat. 2019. V. 126. № 2. P. 629–643.https://doi.org/10.1007/s11144-018-1508-8
  11. Zhu D.D., Liu J.L., Qiao S.Z. // Adv. Mater. 2016. V. 28. № 18. P. 3423.https://doi.org/10.1002/adma.201504766
  12. Alberico E., Nielsen M. // Chem. Commun. 2015. V. 51. № 31. P. 6714.https://doi.org/10.1039/C4CC09471A
  13. Dong K., Razzaq R., Hu Y. // Top Curr. Chem. (Z). 2017. V. 375. № 2. P. 23.https://doi.org/10.1007/s41061-017-0107-x
  14. Boutin E., Robert M. // Trends in Chemistry. 2021. V. 3. № 5. P. 359.https://doi.org/10.1016/j.trechm.2021.02.003
  15. Qiao J., Liu Y., Hong F. // Chem. Soc. Rev. 2014. V. 43. № 2. P. 631.https://doi.org/10.1039/C3CS60323G
  16. Zheng Y., Vasileff A., Zhou X. et al. // J. Am. Chem. Soc. 2019. V. 141. № 19. P. 7646.https://doi.org/10.1021/jacs.9b02124
  17. Lim R.J., Xie M., Sk M.A. et al. // Catalysis Today. 2014. V. 233. P. 169.https://doi.org/10.1016/j.cattod.2013.11.037
  18. Specht M. // International Journal of Hydrogen Energy. 1998. V. 23. № 5. P. 387.https://doi.org/10.1016/S0360-3199(97)00077-3
  19. Barton Cole E., Lakkaraju P.S., Rampulla D.M. et al. // J. Am. Chem. Soc. 2010. V. 132. № 33. P. 11539.https://doi.org/0.1021/ja1023496
  20. Dolganov A.V., Tanaseichuk B.S., Pryanichnikova M.K., et al. // J. Phys. Org. Chem. 2019. V. 32. № 5. e3930.https://doi.org/10.1002/poc.3930
  21. Dolganov A.V., Muryumin E.E., Chernyaeva O.Y. et al. // Materials Chemistry and Physics. 2019. V. 224. P. 148.https://doi.org/10.1016/j.matchemphys.2018.12.006
  22. Dolganov A.V., Tanaseichuk, B.S., Tsebulaeva Y.V. et al. // Int. J. Electrochem. Sci. 2016. P. 9559.https://doi.org/10.20964/2016.11.24
  23. Dolganov A.V., Tanaseichuk B.S., Yurova V.Yu. et al. // Intern. J. of Hydrogen Energy 2019. V. 44. № 39. P. 21495.https://doi.org/10.1016/j.ijhydene.2019.06.067
  24. Dolganov A.V., Tanaseichuk B.S., Moiseeva D.N. et al. // Electrochem. Commun., 2016. V. 68. P. 59. https://doi.org/10.1016/j.elecom.2016.04.015
  25. Dolganov A.V., Chernyaeva O.Y., Kostryukov S.G. et al. // Intern. J. of Hydrogen Energy 2020. V. 45. № 1. P. 501.https://doi.org/10.1016/j.ijhydene.2019.10.175
  26. Ganz O.Yu., Klimaeva L.A., Chugunov D.B. et al. // Russ. J. Phys. Chem. 2022. V. 96 № 5. P. 954.https://doi.org/10.1134/S0036024422050120
  27. Klimaeva L.A., Ganz O.Yu., Chugunov D.B. et al. // Russ. J. Phys. Chem. 2022. V. 96. № 5. P. 958.https://doi.org/10.1134/S0036024422050156
  28. Urban J., Volke J. // Collect. Czech. Chem. Commun. 1994. V. 59. № 11. P. 2545.https://doi.org/10.1135/cccc19942545

补充文件

附件文件
动作
1. JATS XML
2.

下载 (81KB)
3.

下载 (19KB)
4.

下载 (65KB)
5.

下载 (57KB)
6.

下载 (21KB)
7.

下载 (112KB)
8.

下载 (40KB)
9.

下载 (80KB)
10.

下载 (91KB)
11.

下载 (96KB)
12.

下载 (91KB)

版权所有 © А.В. Долганов, Л.А. Климаева, С.Г. Кострюков, А.Ш. Козлов, А.Д. Юдина, О.В. Тарасова, А.В. Князев, 2023

##common.cookie##