Liquid–Vapor Equilibrium in a Toluene–Methanol–N-Octylquinolinium Bromide System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The liquid–vapor equilibrium in the toluene–methanol–N-octylquinolinium bromide system has been studied at 101.3 kPa and various concentrations of the organic salt. It was shown that the quinolinium salt can be used as a separating agent for a toluene–methanol azeotrope mixture. For breaking the azeotrope and separating the mixed solvent into components, the N-octylquinolinium bromide concentration (in mole fractions) should be 0.55 or higher.

Sobre autores

A. Evdokimov

St. Petersburg State University of Industrial Technologies and Design

Email: eanchem@mail.ru
191186, St. Petersburg, Russia

A. Kurzin

St. Petersburg State University of Industrial Technologies and Design

Email: eanchem@mail.ru
191186, St. Petersburg, Russia

A. Tarazanov

St. Petersburg State University of Industrial Technologies and Design

Email: eanchem@mail.ru
191186, St. Petersburg, Russia

S. Shornikova

St. Petersburg State University of Industrial Technologies and Design

Email: eanchem@mail.ru
191186, St. Petersburg, Russia

M. Feofanova

Tver State University

Autor responsável pela correspondência
Email: eanchem@mail.ru
170100, Tver, Russia

Bibliografia

  1. He S., Fan W., Huang H. et al. // ACS Omega. 2021. V. 6. № 50. P. 34736. https://doi.org/10.1021/acsomega.1c05164
  2. Kurzin A.V., Evdokimov A.N., Feofanova M.A., Baranova N.V. // J. Chem. Eng. Data. 2017. V. 62. № 3. P. 889. https://doi.org/10.1021/acs.jced.6b00279
  3. Li W., Guan T., Cao Y. et al. // Fluid Phase Equilib. 2020. V. 506. Article ID 112412. https://doi.org/10.1016/j.fluid.2019.112412
  4. Zawadzki M., Domańska U. // J. Chem. Thermodyn. 2012. V. 48. P. 276. https://doi.org/10.1016/j.jct.2011.12.037
  5. Marek J., Buchta V., Soukup O. et al. // Molecules. 2012. V. 17. № 6. P. 6386. https://doi.org/10.3390/molecules17066386
  6. Królikowska M., Królikowski M., Domańska U. // Ibid. 2020. V. 25. № 23. P. 5687. https://doi.org/10.3390/molecules25235687
  7. Janakey Devi V.K.P., Sai P.S.T., Balakrishnan A.R. // Chem. Eng. Commun. 2018. V. 205. № 6. P. 772. https://doi.org/10.1080/00986445.2017.1418738
  8. Lei Z., Arlt W., Wasserscheid P. // Fluid Phase Equilib. 2007. V. 260. № 1. P. 29. https://doi.org/10.1016/j.fluid.2006.06.009
  9. Евдокимов А.Н., Курзин А.В., Таразанов А.А., Шорникова С.О. // Журн. физ. химии. 2022. Т. 96. № 8. С. 1222. [A.N. Evdokimov, A.V. Kurzin, A.A. Tarazanov, and S.O. Shornikova, Russ. J. Phys. Chem. A 96, 1828 (2022). https://doi.org/10.1134/S003602442208009X].https://doi.org/10.31857/S004445372208009X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (9KB)
3.

Baixar (73KB)

Declaração de direitos autorais © А.Н. Евдокимов, А.В. Курзин, А.А. Таразанов, С.О. Шорникова, М.А. Феофанова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies