Mechanism for the Formation of Nanoscale Oxides in a Medium of Supercritical CO2 Fluid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A possible mechanism is considered for the formation of nanoscale oxides based on titanium and aluminum isopropoxides in a medium of supercritical CO2 fluid. It is shown that because of intermolecular interactions and high pressure in the system, the supercritical fluid acquires the properties of a condensed medium, the main role of which is to restrain processes of hydrolysis. At the first stage of the hydrolysis of titanium isopropoxide, the water molecule is coordinated in the outer sphere of the central atom due to the formation of intermolecular hydrogen bonds. It is then coordinated into the inner sphere with the formation of a five-coordinate transition state and its destruction, creating a product substituted for the hydroxo group. The next steps proceed in a similar way. The described mechanism agrees with experimental findings and produces nanosized X-ray amorphous titanium oxide. (With aluminum isopropoxide, only the hydrolyzed hydroxo form can be produced.) Results suggest the production of nanosized oxides from isopropoxides in a medium of supercritical CO2 fluid is possible for transitional d-elements.

Sobre autores

D. Golubev

Russian Technological University (MIREA)

Email: valeryfom@rambler.ru
119454, Moscow, Russia

A. Sigov

Russian Technological University (MIREA)

Email: valeryfom@rambler.ru
119454, Moscow, Russia

A. Kolobanov

Russian Technological University (MIREA)

Email: valeryfom@rambler.ru
119454, Moscow, Russia

V. Fomichev

Russian Technological University (MIREA)

Autor responsável pela correspondência
Email: valeryfom@rambler.ru
119454, Moscow, Russia

Bibliografia

  1. Воробей А.М., Покровский О.И., Устинович К.Б. и др. // Сверхкритические флюиды: теория и практика. 2015. Т. 10. № 2. С. 51–59.
  2. Lemasson E., Bertin S., West C. // J. of Separation Science. 2016. V. 39. № 1. P. 212. https://doi.org/10.1002/jssc.201501062
  3. Gomes P.B., Mata V.G., Rodrigues A.E. // The J. of Supercritical Fluids. 2007. V. 41. № 1. P. 50. https://doi.org/10.1016/j.supflu.2006.08.018
  4. King J.W. // Annual Review of Food Science and Technology. 2014. V. 5. № 1. P. 215. https://doi.org/10.1146/annurev-food-030713-092447
  5. Kaleva A., Heinonen S., Nikkanen J.P., Levänen E. // IOP Conference Series: Materials Science and Engineering. 2017. V. 175. № 1. P. 120. https://doi.org/10.1088/1757-899X/175/1/012034
  6. Da Silva E.P., Guilherme M.R., Tenório-Neto E.T. et al. // Materials Letters. 2015. V. 136. P. 133 https://doi.org/10.1016/j.matlet.2014.07.156
  7. Zhu C., Zhou Y., Fu S. et al. // ECS Transactions. 2015. V. 69. № 17. P. 631. https://doi.org/10.1149/06917.0631ecst
  8. Kim D.S., Shin Y.H., Lee Y.W. // Chemical Engineering Communications. 2015. V. 202. № 1. P. 78. https://doi.org/10.1080/00986445.2013.825611
  9. Permana A.D.C., Nugroho A., Chung K.Y. et al. // Chemical Engineering Journal. 2014. V. 241. P. 216. https://doi.org/10.1016/j.cej.2013.12.029
  10. Кузьмичева Г.М. Тонкие химические технологии. 2015. Т. 10. № 6. С. 5.
  11. Alekseev E.S., Alentiev A.Y., Belova A.S. et al. // Russ. Chem. Rev. 2020. V. 89. P. 1337. https://doi.org/10.1070/RCR4932?locatt=label:RUSSIAN
  12. Коновалов И.А., Маврин Б.Н., Прокудина Н.А. и др. Изв. академии наук. Серия Химическая. 2016. № 12. С. 2795.
  13. Смирнова К.А., Фомичев В.В., Дробот Д.В. и др. Тонкие химические технологии. 2015. Т. 10. № 1. С. 76.
  14. Sokolov I.E., Konovalov I.A., Zakalyukin R.M. et al. MRS communication. 2018. V. 8. № 1. P. 59. https://doi.org/10.1557/mrc.2018.3
  15. Oskam G., Nellore A., Penn R.L. et al. // J. Phys. Chem. B. 2003. V. 107. P. 1734. https://doi.org/10.1021/jp021237f
  16. Park Jin-Koo, Myoung Jung-Jae, Kyong Jin-Burm et al. // Bull. Korean Chem. Soc. 2003. V. 24. № 5. P. 671. https://doi.org/10.5012/bkcs.2003.24.5.671
  17. Zhang Y., Yang J., Yu Y.-X. // The Journal of Physical Chemistry B. 2005. V. 109. № 27. P. 133575. https://doi.org/10.1021/jp045741r
  18. Teymourtash A.R., Khonakdar D.R., Raveshi M.R. // The of Supercritical Fluids. 2013. V. 74. P. 115. https://doi.org/10.1016/j.supflu.2012.12.010
  19. Lebedev A.E., Katalevich A.M., Menshutina N.V. // J. of Supercritical Fluids. 2015. V. 106. P.122. https://doi.org/10.1016/j.supflu.2015.06.010
  20. Borjan D., Gracnar M., Knez Z. et al. // Processes. 2022. V. 10. P. 2275. https://doi.org/10.3390/pr10112275
  21. Pierotti R.A. // Chem. Rev. 1976. V. 76. P. 717. https://doi.org/10.1021/cr60304a002
  22. Emsley J. The Elements, third ed. Oxford: Oxford University Press, 1998.
  23. Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. P. 154102. https://doi.org/10.1063/5.0005188
  24. Adamo C. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/10.1063/1.478522

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (700KB)
3.

Baixar (568KB)
4.

Baixar (363KB)
5.

Baixar (635KB)
6.

Baixar (310KB)

Declaração de direitos autorais © Д.В. Голубев, А.С. Сигов, А.И. Колобанов, В.В. Фомичев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies