Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Acenaphtho[1,2-k]fluoranthene (1) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene (2) on activated γ-Al2O3. Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol (1b). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1, 1b, and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.

作者简介

V. Brotsman

Faculty of Chemistry, Moscow State University

Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

N. Lukonina

Faculty of Chemistry, Moscow State University

Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

A. Rybalchenko

Faculty of Chemistry, Moscow State University

Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

M. Kosaya

Faculty of Chemistry, Moscow State University

Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

I. Ioffe

Faculty of Chemistry, Moscow State University

Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

K. Lysenko

Faculty of Chemistry, Moscow State University

Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

L. Sidorov

Faculty of Chemistry, Moscow State University

Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

S. Pshenichnyuk

Goryunkov Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences

Email: aag@thermo.chem.msu.ru
450075, Ufa, Russia

N. Asfandiarov

Goryunkov Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences

Email: aag@thermo.chem.msu.ru
450075, Ufa, Russia

A. Goryunkov

Faculty of Chemistry, Moscow State University

编辑信件的主要联系方式.
Email: aag@thermo.chem.msu.ru
119991, Moscow, Russia

参考

  1. Ostroverkhova O. // Chem. Rev. 2016. V. 116. № 22. P. 13279.
  2. Wang C., Dong H., Hu W. et al. // Ibid. 2012. V. 112. № 4. P. 2208.
  3. Segawa Y., Ito H., Itami K. // Nat. Rev. Mater. 2016. V. 1. № 1. P. 15002.
  4. Solà M. // Front. Chem. 2013. V. 1. P. 22.
  5. Majewski M.A., Stępień M. // Angew. Chem. Int. Ed. 2019. V. 58. № 1. P. 86.
  6. Amsharov K.Yu., Kabdulov M.A., Jansen M. // Ibid. 2012. V. 51. № 19. P. 4594.
  7. Koper C., Sarobe M., Jenneskens L.W. // Phys. Chem. Chem. Phys. 2004. V. 6. № 2. P. 319.
  8. Lu R.-Q., Zheng Y.-Q., Zhou Y.-N. et al. // J. Mater. Chem. A. 2014. V. 2. № 48. P. 20515.
  9. Akhmetov V., Feofanov M., Papaianina O. et al. // Chem. Eur. J. 2019. V. 25. № 50. P. 11609.
  10. Gracheva S.V., Yankova T.S., Kosaya M.P. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 4. P. 26998.
  11. Sheldrick G.M. // Acta Cryst. 2008. V. A64. P. 112.
  12. Trasatti S. // Pure Appl. Chem. 1988. V. 58. P. 955.
  13. Cardona C.M., Li W., Kaifer A.E. et al. // Adv. Mater. 2011. V. 23. № 20. P. 2367.
  14. Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981. 163 с.
  15. Pshenichnyuk S.A., Vorob’ev A.S., Modelli A. // J. Chem. Phys. 2011. V. 135. № 18. P. 184301.
  16. Edelson D., Griffiths J.E., McAfee K.B. // Ibid. 1962. V. 37. № 4. P. 917.
  17. Пшеничнюк С.А., Асфандиаров Н.Л., Воробьев А.С., Матейчик Ш. // Успехи. физ. наук. 2022. Т. 192. С. 177 (Pshenichnyuk S.A., Asfandiarov N.L., Vorob’ev A.S. et al. // Phys.-Usp. 2022. V. 65. № 2. P. 163).
  18. Lorquet J.C. // Mass Spectrom. Rev. 1994. V. 13. № 3. P. 233.
  19. Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Rapid Commun. Mass Spectrom. 2015. V. 29. № 9. P. 910.
  20. Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Ibid. 2014. V. 28. № 14. P. 1580.
  21. Макаров А.А., Малиновский А.Л., Рябов Е.А. // Успехи. физ. наук. 2012. Т. 182. С. 1047 (Makarov A.A., Malinovsky A.L., Ryabov E.A. // Phys.-Usp. 2012. V.55. № 10. P. 977).
  22. Chen E.S., Chen E.C.M. // Rapid Commun Mass Spectrom. 2018. V. 32. № 7. P. 604.
  23. Asfandiarov N.L., Muftakhov M.V., Pshenichnyuk S.A. et al. // J. Chem. Phys. 2021. V. 155. № 24. P. 244302.
  24. Asfandiarov N.L., Muftakhov M.V., Rakhmeev R.G. et al. // J. Electron. Spectros. Relat. Phenomena. 2022. V. 256. P. 147178.
  25. Schulz G.J. // Rev. Mod. Phys. 1973. V. 45. № 3. P. 378.
  26. Jordan K.D., Burrow P.D. // Chem. Rev. 1987. V. 87. № 3. P. 557.
  27. Scheer A.M., Burrow P.D. // J. Phys. Chem. B. 2006. V. 110. № 36. P. 17751.
  28. Modelli A. // Phys. Chem. Chem. Phys. 2003. V. 5. № 14. P. 2923.
  29. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  30. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  31. Granovsky A.A. Firefly v. 8.2.0 (Formerly PC GAMESS), http://classic.chem.msu.su/gran/firefly/index.html. 2016.
  32. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
  33. Vladimir A., Mikhail F., Amsharov K. // RSC Adv. 2020. V. 10. № 18. P. 10879.
  34. Papaianina O., Amsharov K.Yu. // Chem. Commun. 2016. V. 52. № 7. P. 1505.
  35. Amsharov K. // Phys. Status Solidi B. 2016. V. 253. № 12. P. 2473.
  36. Bayer J., Herberger J., Holz L. et al. // Chem. Eur. J. 2020. V. 26. № 72. P. 17546.
  37. Papaianina O., Akhmetov V.A., Goryunkov A.A. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 17. P. 4834.
  38. Prins R. // J. Catal. 2020. V. 392. P. 336.
  39. Levin I., Brandon D. // J. Am. Ceram. Soc. 2005. V. 81. № 8. P. 1995.
  40. Илленбергер Е., Смирнов Б.М. // Успехи. физ. наук. 1998. Т. 168. С. 731 (Illenberger E., Smirnov B.M. // Phys.-Usp. 1998. V. 41. № 7. P. 651).
  41. Christophorou L.G. // Adv. Electron. Electron Phys. 1978. V. 46. P. 55.
  42. Collins P.M., Christophorou L.G., Chaney E.L. et al. // Chem. Phys. Lett. 1970. V. 4. № 10. P. 646.
  43. Васильев Ю.В., Мазунов В.А. // Письма в ЖЭТФ. 1990. Т. 51. С. 129 (Vasil’ev Yu.V., Mazunov V.A. // JETP Lett. 1990. V. 51. P. 144).
  44. Spisak S.N., Li J., Rogachev A.Yu. et al. // Organometallics. 2016. V. 35. P. 3105.
  45. Plummer B.F., Steffen I.K., Braley T.L. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 11542.
  46. Berlman I. Handbook of florescence spectra of Aromatic Molecules. 2nd Edition. New York and London: Academic Press. 1971. P. 473.
  47. Clar E., Stephen J.F. // Tetrahedron. 1964. V. 20. № 6. P. 1559.
  48. Plummer B.F., Plummer J.M., Reese W.G. // J. Phys. Chem. 1994. V. 98. № 31. P. 7470.
  49. Bard A.J., Faulkner L.R. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley, 2001. P. 833.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (25KB)
3.

下载 (78KB)
4.

下载 (208KB)
5.

下载 (103KB)
6.

下载 (245KB)
7.

下载 (72KB)
8.

下载 (820KB)
9.

下载 (185KB)

版权所有 © В.А. Броцман, Н.С. Луконина, А.В. Рыбальченко, М.П. Косая, И.Н. Иоффе, К.А. Лысенко, Л.Н. Сидоров, С.А. Пшеничнюк, Н.Л. Асфандиаров, А.А. Горюнков, 2023

##common.cookie##