The Molecular Mechanism of H2O2 Decomposition in a Reaction with an Au25(SCH3)12 Cluster

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The reactions of neutral and anionic Au25(SCH3)12 clusters with one H2O2 molecule (mechanism I) and with its dimer (H2O2)2 (mechanism II) have been studied within the framework of the density functional theory (DFT). It has been established that all processes proceed with low activation barriers and a large gain in energy during the formation of products, and also that mechanisms I and II are interconnected. Based on the calculated data, the structure of gold clusters with the most probable active centers for further interaction with methane, which contain one or two O atoms, is proposed. In this case, clusters containing the O2 fragment can form not only in the reaction of the initial cluster Au25(SCH3)12 with hydrogen peroxide, but also with molecular oxygen, since the O2 adsorption energy is low and the process is close to equilibrium.

Авторлар туралы

N. Nikitenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: ng_nikitenko@mail.ru
Chernogolovka, Moscow oblast, Russia

A. Shestakov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Faculty of Fundamental Physical and Chemical Engineering, Moscow State University

Хат алмасуға жауапты Автор.
Email: ng_nikitenko@mail.ru
Chernogolovka, Moscow oblast, Russia; Moscow, Russia

Әдебиет тізімі

  1. Yaseen M., Humayun M., Khan A. et al. // Energies. 2021. V. 14. № 5. P. 1278. https://doi.org/10.3390/en14051278
  2. Ishida T., Murayama T., Taketoshi A. et al. // Chem. Rev. 2020. V. 120. № 2. P. 464. https://doi.org/10.1021/acs.chemrev.9b00551
  3. Li Z., Brouwer C., He C. // Ibid. 2008. V. 108. № 8. P. 3239. https://doi.org/10.1021/cr068434l
  4. Stratakis M., Garcia H. // Ibid. 2012. V. 112. № 8. P. 4469. https://doi.org/10.1021/cr3000785
  5. Sankar M., He Q., Engel R.V. et al. // Ibid. 2020. V. 120. № 8. P. 3890. https://doi.org/10.1021/acs.chemrev.9b00662
  6. Carabineiro S.A.C. // Front. Chem. 2019. V. 7:702. https://doi.org/10.3389/fchem.2019.00702
  7. Qi G., Davies T.E., Nasrallah A. et al. // Nature Catalysis. 2022. V. 5. № 1. P. 45. https://doi.org/10.1038/s41929-021-00725-8
  8. Golovanova S.A., Sadkov A.P., Shestakov A.F. // Kinetics and Catalysis. 2020. V. 61. № 5. P. 740. https://doi.org/10.1134/s0023158420040060
  9. Cai X., Saranya G., Shen K.Q. et al. // Angew. Chem.-Int. Edit. 2019. V. 58. № 29. P. 9964. https://doi.org/10.1002/anie.201903853
  10. Staykov A., Miwa T., Yoshizawa K. // J. of Catalysis. 2018. V. 364. P. 141. https://doi.org/10.1016/j.jcat.2018.05.017
  11. Mikami Y., Dhakshinamoorthy A., Alvaro M. et al. // Catal. Sci. Technol. 2013. V. 3. №1. P. 58. https://doi.org/10.1039/c2cy20068f
  12. Wani I.A., Jain S.K., Khan H. et al. // Curr. Pharm. Biotechnol. 2021. V. 22. № 6. P. 714. https://doi.org/10.2174/1389201022666210218195205
  13. Nasaruddin R.R., Chen T.K., Yan N. et al. // Coord. Chem. Rev. 2018. V. 368. P. 60. https://doi.org/10.1016/j.ccr.2018.04.016
  14. Liu L., Li H.Y., Tan Y. et al. // Catalysts. 2020. V. 10. № 1. P. 107. https://doi.org/10.3390/catal10010107
  15. Asao N., Hatakeyama N., Menggenbateer et al. // Chem. Comm. 2012. V. 48. № 38. P. 4540. https://doi.org/10.1039/c2cc17245c
  16. Zhu Y., Qian H.F., Drake B.A. et al. // Angew. Chem.-Int. Edit. 2010. V. 49. № 7. P. 1295. https://doi.org/10.1002/anie.200906249
  17. Tian S.B., Cao Y.T., Chen T.K. et al. // Chem. Comm. 2020. V. 56. № 8. P. 1163. https://doi.org/10.1039/c9cc08215h
  18. Yao Q.F., Wu Z.N., Liu Z.H. et al. // Chem. Sci. 2021. V. 12. № 1. P. 99. https://doi.org/10.1039/d0sc04620e
  19. Heaven M.W., Dass A., White P.S. et al. // J. Am. Chem. Soc. 2008. V. 130. № 12. P. 3754. https://doi.org/10.1021/ja800561b
  20. Zhu M., Aikens C.M., Hollander F.J. et al. // Ibid. 2008. V. 130. № 18. P. 5883. https://doi.org/10.1021/ja801173r
  21. Wu Z.W., Gayathri C., Gil R.R. et al. // Ibid. 2009. V. 131. № 18. P. 6535. https://doi.org/10.1021/ja900386s
  22. Juarez-Mosqueda R., Mpourmpakis G. // Phys. Chem. Chem. Phys. 2019. V. 21. № 40. P. 22272. https://doi.org/10.1039/c9cp03982a
  23. Zhu K.X., Liang S.X., Cui X.J. et al. // Nano Energy. 2021. V. 82. 105718 https://doi.org/10.1016/j.nanoen.2020.105718
  24. Kang X., Chong H.B., Zhu M.Z. // Nanoscale. 2018. V. 10. № 23. P. 10758. https://doi.org/10.1039/c8nr02973c
  25. Голованова С.А., Садков А.П., Шестаков А.Ф. // Изв. АН. Сер. Хим. 2022. № 4. С. 665.
  26. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  27. Stevens W.J., Bash H., Krauss M. // J. Chem. Phys. 1984. V. 81. № 12. P. 6026.
  28. Stevens W.J., Krauss M., Bash H. et al. // Can. J. Chem. 1992. V. 70. P. 612.
  29. Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. Хим. 2005. № 3. С. 804. https://doi.org/10.1007/s11172-005-0329-x
  30. Nikitenko N.G., Shestakov A.F. // Kinetics and Catalysis. 2014. V. 55. № 4. P. 401. https://doi.org/10.1134/s0023158414030100
  31. Nikitina N.A., Pichugina D.A., Kuz’menko N.E. // Kinet. Catal. 2019. V. 60. № 5. P. 606. https://doi.org/10.1134/s0023158419050033
  32. Pichugina D.A., Nikitina N.A., Kuz’menko N.E. // J. Phys. Chem. C. 2020. V. 124. № 5. P. 3080. https://doi.org/10.1021/acs.jpcc.9b10286
  33. Barone V., Cossi M., Tomasi J. // J. Chem. Phys. 1997. V. 107. № 8. P. 3210. https://doi.org/10.1063/1.474671
  34. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision A.7. Pittsburgh: Gaussian Inc., 2003.
  35. Wu Z.K., Jin R.C. // ACS Nano. 2009. V. 3. № 7. P. 2036. https://doi.org/10.1021/nn9004999
  36. Wang W.L., Ji C.L., Liu K. et al. // Chem. Soc. Rev. 2021. V. 50. № 3. P. 1874. https://doi.org/10.1039/d0cs00254b
  37. Никитенко Н.Г., Шестаков А.Ф. // Кинетика и катализ. 2013. Т. 54. № 2. С. 177. https://doi.org/10.1134/S0023158413020110
  38. Никитенко Н.Г., Шестаков А.Ф. // ДАН. 2013. Т. 450. № 2. С. 181. https://doi.org/10.1134/s0012500813050066
  39. Liu K., Chen T., He S.Y. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 42. P. 12952. https://doi.org/10.1002/anie.201706647
  40. Liu K., He S.Y., L. Li et al. // Scientific Reports. 2021. V. 11. № 1. https://doi.org/10.1038/s41598-021-89235-y
  41. Шамб У., Сеттерфилд Ч., Вентворс Р. Перекись водорода. Москва: Изд-во иностр. лит. 1958. 578 с.
  42. Kelly C.P., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2007. V. 111. № 2. P. 408. https://doi.org/10.1021/jp065403l
  43. Sivadinarayana C., Choudhary T.V., Daemen L.L. et al. // J. Am. Chem. Soc. 2004. V. 126. № 1. P. 38. https://doi.org/10.1021/ja0381398
  44. Agarwal N., Thomas L., Nasrallah A. et al. // Catalysis Today. 2021. V. 381. P. 76. https://doi.org/10.1016/j.cattod.2020.09.001
  45. Yao Z.H., Zhao J.Y., Bunting R.J. et al. // Acs Catalysis. 2021. V. 11. № 3. P. 1202. https://doi.org/10.1021/acscatal.0c04125
  46. Tang Y.Q., Zhang Z.H., Lu M.K. et al. // Ind. Eng. Chem. Res. 2019. V. 58. № 33. P. 15119. https://doi.org/10.1021/acs.iecr.9b01459
  47. Beletskaya A.V., Pichugina D.A., Shestakov A.F. et al. // J. Phys. Chem. A. 2013. V. 117. № 31. P. 6817. https://doi.org/10.1021/acs.iecr.9b01459
  48. Wells D.H., Delgass W.N., Thomson K.T. // J. Catal. 2004. V. 225. № 1. P. 69. https://doi.org/10.1016/j.jcat.2004.03.028
  49. Barrio L., Liu P., Rodriguez J.A. et al. // J. Phys. Chem. C. 2007. V. 111. № 51. P. 19001. https://doi.org/10.1021/jp073552d
  50. Ford D.C., Nilekar A.U., Xu Y. et al. // Surface Science. 2010. V. 604. № 19–20. P. 1565. https://doi.org/10.1016/j.susc.2010.05.026
  51. Joshi A.M., Delgass W.N., Thomson K.T. // J. Phys. Chem. B. 2005. V. 109. № 47. P. 22392. https://doi.org/10.1021/jp052653d
  52. Ji J., Lu Z., Lei Y., Turner C.H. // Catalysts. 2018. V. 8. № 10. P. 421. https://doi.org/10.3390/catal8100421
  53. Coperet C. // Chem. Rev. 2010. V. 110. № 2. P. 656. https://doi.org/10.1021/cr900122p

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (640KB)
3.

Жүктеу (76KB)
4.

Жүктеу (516KB)

© Н.Г. Никитенко, А.Ф. Шестаков, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>