Photochemical Oxidation of Hexacyanoferrates in Aqueous Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main kinetic laws governing the photochemical degradation of stable cyanide compounds are studied using the example of hexacyanoferrates (HCFs) in the combined {Solar/S2O2−882−} oxidation system under the action of solar radiation. The efficient oxidation of intermediate products (toxic free cyanides) to nontoxic final products proceeds in the combined {Solar/S2O2−882−} system, in addition to the complete degradation of [Fe(CN)6]3− complex. The high efficiency of HCFs oxidation in the combined system is attributed to a conjugated ion-radical mechanism that includes (along with direct photolysis) oxidation with the participation of highly reactive oxygen species (ROSes)—reactive secondary oxidizing agents consisting mostly of hydroxyl radicals generated in situ during the simultaneous alkali and light activation of persulfate with solar radiation. The effect anions (chlorides, sulfates, bicarbonates) and associated organic pollutants (xanthates, phenol) most characteristic of cyanide-containing industrial wastewater have on HCF oxidation in the {Solar/S2O2−882−} system is studied. The studied anions promote HCF photochemical oxidation in a wide range of concentrations (1–10 mM).

About the authors

B. A. Tsybikova

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Email: abat@binm.ru
670047, Ulan-Ude, Russia

A. A. Batoeva

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Email: abat@binm.ru
670047, Ulan-Ude, Russia

M. R Sizykh

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Email: abat@binm.ru
670047, Ulan-Ude, Russia

D. G. Aseev

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: abat@binm.ru
670047, Ulan-Ude, Russia

References

  1. Dash R.R., Gaur A., Balomajumder C. // J. Hazard. Mater. 2009. V. 163. P. 1.
  2. Johnson C.A. // Appl. Geochem. 2015. V. 57. P. 194.
  3. Mudder T.I., Botz M.M. // The Europ. J. of Mineral Processing and Environmental Protection. 2004. V. 4. № 1. P. 62.
  4. Adams M.D. // Miner. Eng. 2013. V. 53. P. 241.
  5. Falagan C., Grail B.M., Johnson D.B. // Miner. Eng. 2017. V. 106. P. 71.
  6. Приказ Минсельхоза РФ от 13 декабря 2016 г. № 552 “Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения”. [Электронный ресурс] – Режим доступа: URL: https://rulaws.ru/acts/Prikaz-Minselhoza-Rossii-ot-13.12.2016-N-552/ − Загл. с экрана. – Яз. рус.
  7. Botz M.M., Mudder T.I., Accil A. Cyanide treatment: physical, chemical and biological processes // Advanced in Gold Ore Processing ed. Adams M.D. Amsterdam: Elsevier Ltd. 2005. P. 672.
  8. Kuyucak N., Akcil A. // Miner. Eng. 2013. V. 50–51. P. 13.
  9. Rodriguez-Narvaez O.M., Peralta-Hernández J., Bandala E. //Chem. Eng. J. 2017. V. 323. № 9. P. 361.
  10. Yang Y., Ok Y.S., Kim K.H. et al. // Sci. Total Environ. 2017. V. 596–597. № 10. P. 303.
  11. Yang D., Zhao R. // Curr. Pollution Rep. 2015. V. 1. P. 167.
  12. Giannakis S., Lin K.-Y.A, Ghanbari F. // Chem. Eng. J. 2021. V. 406. P. 127083.
  13. Yang Q., Ma Y., Chen F. et al. // Ibid. 2019. V. 378. P. 122149.
  14. Huang W., Bianco A., Brigante M., Mailhot G. // J. Hazard. Mater. 2018. V. 347. P. 279.
  15. Асеев Д.Г., Батоева А.А., Сизых М.Р. // Журн. физ. химии. 2018. Т. 92. № 9. С. 1486.
  16. Malato S., Fernandez-Ibanez P., Maldonado M. I. et al. // Catal. Today. 2009. V. 147. № 1. P. 1.
  17. Tsydenova O., Batoev V., Batoeva A. / Int. J. Environ. Res. Public Health. 2015. V. 12. P. 9542.
  18. Khandarkhaeva M., Batoeva A., Sizykh M. et al. // J. Environ. Manage. 2019. V. 249. P. 109348.
  19. Garkusheva N., Matafonova G., Tsenter I. et al. // J. Env. Sci. & Health, Part A. 2017. V. 52. P. 849.
  20. Tsybikova B.A., Batoeva A.A. // IOP Conference Series: Materials Science and Engineering (MSE). 2019. V. 687. P. 066078.
  21. ПНД Ф 14.1: 2.164-2000. Количественный химический анализ вод. Методика выполнения измерений массовых концентраций гексацианоферратов в пробах природных и сточных вод фотометрическим методом. М.: ФБУ “ФЦАО”, 2009. 11 с.
  22. ПНД Ф 14.1: 2:3.1-95. Количественный химический анализ вод. Методика измерений массовой концентрации ионов аммония в природных и сточных водах фотометрическим методом с реактивом Несслера. М.: ФБУ “ФЦАО”, 2017. 26 с.
  23. ПНД Ф 14.1: 2.56-96. Количественный химический анализ вод. Методика выполнения измерений массовой концентрации цианидов в природных и сточных водах фотометрическим методом с пиридином и барбитуровой кислотой. М.: ФБУ “ФЦАО”, 2015. 27 с.
  24. Jimenez M., Oller I., Maldonado M.I. et al. // Catal. Today. 2011. V. 161. P. 214.
  25. Malato S., Blanco J., Vidal A. et al. // Appl. Catal. B. 2002. V. 37. P. 1.
  26. Hincapié M., Maldonado M.I., Oller I. et al. // Catal. Today. 2005. V. 101. P. 203.
  27. Ibargüen-López H. López-Balanta B., Betancourt-Buitrago L. et al. // J. Environ. Chem. Eng. 2021. V. 9. P. 106233.
  28. Moggi L., Bolletta F., Balzani V., Scandola F. // J. Inorg. Nucl. Chem. 1966. V. 28. P. 2589.
  29. Fuller M.W., LeBrocq F.K.M., Leslie E., Wilson I.R. // Aust. J. Chem. 1985. V. 39. P. 1411
  30. Rader W.S., Solujic L., Milosavljevic E.B. et al. // Environ. Sci. Technol. 1993. V. 27. P. 1875
  31. Moussavi G., Pourakbar M., Aghayani E. et al. // Chem. Eng. J. 2016. V. 294. P. 273.
  32. Sarla M., Pandit M., Tyagi D.K., Kapoor J.C. // J. Hazard. Mater. 2004. V. 116. P. 49.
  33. Wang J., Wang S. // Chem. Eng. J. 2018. V. 334. P. 1502.
  34. Furman O.S., Teel A.L., Watts R.J. // Environ. Sci. Technol. 2010. V. 44. P. 6423.
  35. Qi C., Liu X., Ma J. et al. // Chemosphere. 2016. V. 151. P. 280.
  36. Yang Y., Pignatello J.J., Ma J., Mitch W.A. // Environ. Sci. Technol. 2014. V. 48. P. 2344.
  37. Huang Y.-F., Huang Y.-H. // J. Hazard. Mater. 2009. V. 162. P. 1211.
  38. Yang Y., Ji Y., Yang P. et al. // J. Photochem. Photobiol. A. 2018. V. 360. P. 188.
  39. Neta P., Huie R.E., Ross A.B. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 1027.
  40. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. // J. Phys. Chem. Ref. Data. 1988. V. 513. P. 513.
  41. Liang H.Y., Zhang Y.-G., Huang S.-B., Hussain I. // Chem. Eng. J. 2013. V. 218. P. 384.
  42. Bi W.L., Wu Y.L., Wang X.N. et al. // Ibid. 2016. V. 302. P. 811.
  43. Sharma J., Mishra I.M., Dionysiou D.D., Kumar V. // Chem. Eng. J. 2015. V. 276. P. 193.
  44. Lee J., von Gunten U., Kim J.-H. // Environ. Sci. Technol. 2020. V. 54. P. 3064.
  45. Khan J.A., He X.X., Khan H.M. et al. // Chem. Eng. J. 2013. V. 218. P. 376.
  46. Basfar A.A., Mohamed K.A., Al-Abduly A.J., Al-Shahrani A.A. // Ecotoxicol. Environ. Saf., 2009. V. 72. P. 948.
  47. Garbin J.R., Milori D.M.B.P., Simões M.L. et al. // Chemosphere. 2007. V. 66. P. 1692
  48. Qian Y., Xue G., Chen J. et al. // J. Hazard. Mater. 2018. V. 354 P. 153.
  49. Lei Y., Cheng S., Luo N., Yang X. // Environ. Sci. Technol. 20019. V. 53.
  50. Ghauch A., Baalbaki A., Amasha M. // Chem. Eng. J. 2017. V. 317. P. 1012.
  51. Liu Y., He X., Duan X. et al. // Water Res. 2016. V. 95. P. 195.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (160KB)
3.

Download (67KB)
4.

Download (88KB)
5.

Download (51KB)
6.

Download (392KB)
7.

Download (43KB)

Copyright (c) 2023 Б.А. Цыбикова, А.А. Батоева, М.Р. Сизых, Д.Г. Асеев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».