An Investigation of the Properties of Binary and Ternary Mixtures Containing Morpholine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The densities of binary and ternary mixtures of morpholine with dimethyl sulfoxide and N-methyl-2-pyrrolidone are experimentally studied at 293.15 K and atmospheric pressure, density deviations and excess molar volumes of mixtures are calculated from experimental data, concentration dependences for binary systems are described by the Redlich–Kister polynomial, and density isoline diagrams of the morpholine–dimethyl sulfoxide–N-methyl-2-pyrrolidone system are plotted.

Sobre autores

V. Zhuchkov

MIREA–Russian Technological University, Lomonosov Institute of Fine Chemical Technologies

Email: raevalentina1@gmail.com
119048, Moscow, Russia

V. Raeva

MIREA–Russian Technological University, Lomonosov Institute of Fine Chemical Technologies

Email: raevalentina1@gmail.com
119048, Moscow, Russia

A. Ul’yanova

Moscow State Pedagogical University

Autor responsável pela correspondência
Email: raevalentina1@gmail.com
119435, Moscow, Russia

Bibliografia

  1. Гайле А.А., Сомов В.В., Залищевский Г.Д. Морфолин и его производные. Получение, свойства и применение в качестве селективного растворителя. СПб.: Химиздат, 2007. 332 с.
  2. Marrufo B., Sanchotello M., Loras S. // Fluid Phase Equil. 2010. V. 296. № 2. P. 178. https://doi.org/10.1016/j.fluid.2010.04.008
  3. Coca J., Pis J.J. // J. Chem. Eng. Data. 1979. V. 24. № 2. P. 103. https://doi.org/10.1021/je60081a017
  4. Kozin V.G., Mukhamadiev A.A. // Russ. J. Appl. Chem. 2002. V. 75. № 7. P. 1061.https://doi.org/10.1023/A:1020791608247
  5. Козин В.Г., Мухамадиев А.А. // ЖПХ. 2001. Т.74. № 8. С. 1252.
  6. Parthipan G., Thenappan T. // J. Mol. Liq. 2008. V. 138. № 1–3. P. 20.https://doi.org/10.1016/j.molliq.2007.06.010
  7. Rama Rao G.V., Viswanatha Sarma A., Rambabu G. // IJPAP. 2004. V. 42. № 11. P. 820.
  8. Rama Rao G.V., Viswanatha Sarma A., Ramachandra D., Rambabu G. // Indian J. Chem. 2007. V. 46A. P. 1972.
  9. Venis A.R., Rajkumar X.R. // Orient. J. Chem. 2011. V. 27. № 1. P. 105.
  10. Makavana M., Sharma S. // J. Mol. Liq. 2016. V. 222. P. 535. https://doi.org/10.1016/j.molliq.2016.07.045
  11. Umasivakami K., Vaideeswaran S., Venis A.R. // J. Serb. Chem. Soc. 2018. V. 83. № 10. P. 1131. https://doi.org/10.2298/JSC170829056U
  12. Gil B.K., Sharma H., Rattan V.R. // Int. J. Chem. Mol. Eng. 2016. V. 10. № 3. P. 325.
  13. Sharma S., Makavana M. // Fluid Phase Equil. 2014. V. 375. P. 219.https://doi.org/10.1016/j.fluid.2014.05.008
  14. Awwad A.M., Allos E.I., Salman S.R. // J. Chem. Eng. Data. 1988. V. 33. № 3. P. 265. https://doi.org/10.1021/je00053a013
  15. Абрамович А.И., Ланшина Л.В. // Журн. физ. химии. 2010. Т. 84. № 7. С. 1269.
  16. Ланшина Л.В., Абрамович А.И. // Там же. 2007. Т. 81. № 2. С. 239.
  17. Minevich A., Marcus Y. // J. Chem. Eng. Data. 2003. V. 48. № 1. P. 208. https://doi.org/10.1021/je020191g
  18. Maham Y., Boivineau M., Mather A.E. // J. Chem. Thermodyn. 2001. V. 33. P. 1725. https://doi.org/10.1006/jcht.2001.0885
  19. Satei A., Azim Soltanabadi A. // J. Mol. Liq. 2022. V. 348. 118417. https://doi.org/10.1016/j.molliq.2021.118417
  20. Mirzaee R., Soltanabadi A., Ranjbar S., Fakhri Z. // Struct. Chem. 2021. V. 32. P. 2319. https://doi.org/10.1007/s11224-021-01808-9
  21. Kumari A., Aniya V., Rane N.V. et al. // Thermochim. Acta. 2017. V. 649. P. 41. https://doi.org/10.1016/j.tca.2016.12.010
  22. Park S.-J., Fischer K., Gmehling J. // J. Chem. Eng. Data. 1994. V. 39. № 4. P. 859. https://doi.org/10.1021/je00016a050
  23. Fakhri Z., Azad M. T. // J. Mol. Liq. 2020. V. 302. 112584. https://doi.org/10.1016/j.molliq.2020.112584
  24. Bala D., Gowrisankar M., Ramachandran D. // Int. J. Ambient Energy 1. 2020. P. 1. https://doi.org/10.1080/01430750.2020.1852112
  25. Козин В.Г., Мухамадиев А.А. // Нефтехимия. 2002. Т. 42. № 4. С. 311.
  26. Zhuchkov V.I., Raeva V.M., Frolkova A.K. // Chem. Data Col. 2022. V. 38. 100840. https://doi.org/10.1016/j.cdc.2022.100840
  27. Simoiu A.-M., Iacob A. // J. Therm. Anal. Calorim. 2012. V. 110. P. 329.https://doi.org/10.1007/s10973-012-2345-z
  28. Friedman H.B., Barnard A., Doe W.B. et al. // JACS. 1940. V. 62. № 9. P. 2366. https://doi.org/10.1021/ja01866a029
  29. Živkovíc N.V., Šerbanovíc S.S., Kijevčanin M.Lj., Živkovíc E.M. // J. Chem. Eng. Data. 2013. V. 58. № 12. P. 3332. https://doi.org/10.1021/je400486p
  30. García-Abuín A., Gomez-Díaz D., La Rubia M.D. et al. // J. Chem. Eng. Data. 2011. V. 56. № 6. P. 2904. https://doi.org/10.1021/je200121f
  31. García-Abuín A., Gomez-Díaz D., La Rubia M.D., Navaza J.M. // Ibid. 2011. V. 56. № 3. P. 646. https://doi.org/10.1021/je100967k
  32. López A.B., García-Abuín A., Gómez-Díaz D. et al. // J. Chem. Thermodyn. 2013. V. 61. P. 1. https://doi.org/10.1016/j.jct.2013.01.020
  33. Ciocirlan O., Iulian O. // J. Serb. Chem. Soc. 2009. V. 74. № 3. P. 317. https://doi.org/10.2298/JSC0903317C
  34. Harmandeep Singh Gill, Rattan V.K. // J. of Thermodynamics. 2014. № 3. Art. ID 607052. https://doi.org/10.1155/2014/607052
  35. Tsierkezos N.G., Kelarakis A.E., Palaiologou M.M. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 395. https://doi.org/10.1021/je990271t
  36. Ciocirlan O., Iulian O. // J. Serb. Chem. Soc. 2008. V. 73. № 1. P. 73. https://doi.org/10.2298/JSC0801073C
  37. Bala D., Gowrisankar M., Ramachandran D. et al. // Intern. J. of Ambient Energy. 2020. V. 41. https://doi.org/10.1080/01430750.2020.1852112
  38. Wang X., Yang F., Gao Y., Liu Z. // J. Chem. Thermodyn. 2013. V. 57. P. 145. https://doi.org/10.1016/j.jct.2012.08.021
  39. Ramos-Estrada M., López-Cortés I.Y., Iglesias-Silva G.A., Pérez-Villaseñor F. // J. Chem. Eng. Data. 2018. V. 63. P. 4425. https://doi.org/10.1021/acs.jced.8b00537
  40. Venis A.R., Rajkumar X.R. // Asian J. Chemistry. 2014. V. 26. № 15. P. 4711. https://doi.org/10.14233/ajchem.2014.16182
  41. Budeanu M.M., Dumitrescu V. // Appl. Sci. 2022. V. 12. P. 116. https://doi.org/10.3390/app12010116
  42. Терентьева В.Б., Пешнев Б.В., Николаев А.И. // Тонкие химические технологии. 2021. Т. 16. № 5. С. 390.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (24KB)
3.

Baixar (24KB)
4.

Baixar (38KB)
5.

Baixar (35KB)
6.

Baixar (117KB)
7.

Baixar (183KB)

Declaração de direitos autorais © В.И. Жучков, В.М. Раева, А.А. Ульянова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies