Phase Equilibria in H2O–CH3SO3H System: Experiment and Thermodynamic Modeling

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Water activities in H2O–CH3SO3H system were obtained by the dew point method and by the static method of a vapor pressure measurement in a temperature range 288.15–323.15 K. Pitzer–Simonson–Clegg model parameters were calculated. The parameters describe adequately properties of a liquid phase in a temperature range 198.15–323.15 К and with an acid concentration up to 80 wt %. Stability parameters were determined for two solid phases, HMS·H2O and HMS·3H2O (HMS = CH3SO3H).

Sobre autores

E. Belova

Department of Chemistry, Moscow State University, Moscow, Russia

Email: catrine2@mail.ru
Moscow, Russia

A. Kapelushnikov

Materials Science Department, Moscow State University

Email: catrine2@mail.ru
Moscow, Russia

A. Voskov

Department of Chemistry, Moscow State University, Moscow, Russia

Autor responsável pela correspondência
Email: catrine2@mail.ru
Moscow, Russia

Bibliografia

  1. Clegg S.L., Brimblecombe P. // Environ. Technol. 1985. T. 6. C. 269.
  2. Pasteur E.C., Mulvaney R. // J. Geophys. Res. Atmos. 2000. T. 105. C. 11525.
  3. Güner F.E.G., Sakurai T., Hondoh T. // Eur. J. Mineral. 2013. T. 25. C. 79.
  4. Choczaj B.G., Bartelme M.J., Lentsch S.E. и дp. Limescale and soap scum removing composition containing methane sulfonic acid: a.c. US8722609B2. 2014.
  5. Bengoa L.N., Pary P., Conconi M.S. и дp. // Electrochim. Acta. 2017. T. 256. C. 211.
  6. Ahn J., Wu J., Lee J. // Hydrometallurgy. 2019. T. 187. C. 54.
  7. Wang B., Lin X.Y., Tang Y. и дp. // J. Power Sources. 2019. T. 436. C. 226828.
  8. Berthoud A. // Helv. Chim. Acta. 1929. T. 12. C. 859.
  9. Gregor H.P., Rothenberg M., Fine N. // J. Phys. Chem. 1963. T. 67. C. 1110.
  10. Covington A.K., Robinson R.A., Thompson R. // J. Chem. Eng. Data. 1973. T. 18. C. 422.
  11. Clegg S.L., Pitzer K.S., Brimblecombe P. // J. Phys. Chem. 1992. T. 96. C. 9470.
  12. Белова Е.В., Финкельштейн Д.И., Максимов А.И., Успенская И.А. // ЖФХ. 2019. Т. 93. С. 163.
  13. Малютин А.С., Коваленко Н.А., Успенская И.А. // ЖНХ. 2020. Т. 65. С. 781
  14. Термодинамические свойства индивидуальных веществ. Т. 1 (2) // Под. ред. Глушко В.П., Гурвича Л.В. М.: Наука, 1978. С. 45–46.
  15. Dykyj J., Svoboda J., Wilhoit R.C. и дp. Inorganic Compounds, in Organic Compounds, C1 to C57. Part 1, Vapor Pressure of Chemicals. Vapor Pressure and Antoine Constants for Oxygen Containing Organic Compounds, Landolt–Börnstein – Group IV Physical Chemistry, 20B. New York: Springer, 2000. C. 14.
  16. Clarke J.H.R., Woodward L.A. // J. Chem. Soc. Faraday Trans. 1966. T. 62. C. 2226.
  17. Covington A.K., Lilley T.H. // J. Chem. Soc. Faraday Trans. 1967. T. 63. C. 1749.
  18. Covington A.K., Thompson R. // J. Solution Chem. 1974. T. 3. C. 603.
  19. Telfah A., Majer G., Kreuer K.D. и дp. // Solid State Ion. 2010. T. 181. C. 461.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (3KB)
3.

Baixar (2KB)
4.

Baixar (2KB)
5.

Baixar (71KB)
6.

Baixar (2KB)
7.

Baixar (2KB)
8.

Baixar (141KB)
9.

Baixar (80KB)

Declaração de direitos autorais © Е.В. Белова, А.С. Капелюшников, А.Л. Восков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies