The Effect of Temperature on the Volume Properties of L-Lysine in Aqueous and Aqueous Buffer Solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The behavior of L-lysine (Lys) in water and an aqueous buffer solution is studied by densimetry as the temperature varies from 288.15 to 313.15 K with an interval of 5 K. Based on the experimental density values of amino-acid solutions, the apparent molar volumes and partial molar volumes of Lys are determined at an infinite dilution in water and buffer solution at each temperature. The effects of temperature, medium, and amino-acid concentration on volumetric characteristics are revealed. The partial molar extensibility and their derivatives with respect to temperature, the values of which indicate the structurally destructive behavior of Lys in the studied solutions, are determined. It is found that the structurally destructive effects of Lys are enhanced in an aqueous buffer solution. It is shown that the partial molar volumes of amino-acid transfer from water to the buffer solution have positive values in the studied temperature range. The results obtained are discussed on the basis of various types of molecular interactions between a solute and a solvent using the Gurney model.

作者简介

E. Tyunina

Federal State Budgetary Institution of Science “Krestov Institute of Chemistry of Solutions,” Russian Academy of Sciences

Email: tey@isc-ras.ru
153045, Ivanovo, Russia

G. Tarasova

Federal State Budgetary Institution of Science “Krestov Institute of Chemistry of Solutions,” Russian Academy of Sciences

编辑信件的主要联系方式.
Email: tey@isc-ras.ru
153045, Ivanovo, Russia

参考

  1. Основы биохимии. В 3-х томах / Под ред. Ю.А. Овчинникова. М.: Мир, 1981. Т. 1. С. 115.
  2. Тюкавкина Н.А., Бауков Ю.И., Зурабян С.Э. Биоорганическая химия. М.: “ГЭОТАР-Медиа”, 2011. 416 с.
  3. Scheraga H.A. // Pure and Appl. Chem. 1982. V. 54. № 8. P. 1495.
  4. Makhatadze G.I., Privalov P.L. // Biophys. Chem. 1994. V. 51. P. 291.
  5. Kaliman I., Nemukhin A., Varfolomeev S. // J. Chem. Theory Comput. 2010. V. 6. P. 184.
  6. Fedotova M.V., Kruchinin S.E. // J. Mol. Liq. 2012. V. 169. P. 1.
  7. Rai A.K., Fei W., Lu Zh. et al. // Theor. Chem, Acc. 2009. V. 124. P. 37.
  8. Urry D.W., Urry K.D., Szaflarski W. et al. // Curr. Pharm. Des. 2009. V. 15. P. 2833.
  9. Ashton L.A., Bullock J. // J. Chem. Soc., Faraday Trans. 1982. V. 1. № 78. P. 1177.
  10. Tyunina E.Yu., Badelin V.G. // J. Solution Chem. 2016. V. 45. P. 475.
  11. Asgharzadeh S., Shareghi B., Farhadian S. // Inter. J. Biolog. Macromol. 2019. V. 131. P. 548.
  12. Ivanov E.V., Lebedeva E.Yu., Kravchenko A.N. // J. Chem. Thermodynamics. 2017. V. 115. P. 148.
  13. Kumar A., Chane P.S. // Sens. Actuators B: Chem. 2019. V. 281. P. 933. https://doi.org/10.1016/j.snb.2018.11.023
  14. Tao M., Zhu M., Wu Ch., Hi Zh. // Asian J. Pharm. Sci. 2015. V. 10. P. 57. https://doi.org/10.1016/j.ajps.2014.08.012
  15. Bregier-Jarzebowska R., Hoffmann S.K., Ƚomozik L. et al. // Polyhedron. 2019. V. 173. P. 114137. https://doi.org/10.1016/j.poly.2019.114137
  16. Karimi M., Yazdi F.T., Mortazavi S.A. et al. // Polimer Testing. 2020. V. 83. P. 106338.
  17. Lin L., Gu Y., Li C. et al. // Food Control. 2018. V. 91. P. 76.
  18. Han F., Chalikian T.V. // J. Am. Chem. Soc. 2003. V. 125. P. 7219. https://doi.org/10.1021/ja030068p
  19. Zhao H. // Biophys. Chem. 2006. V. 122. P. 157.
  20. Banipal T.S., Singh K. // J. Solution Chem. 2007. V. 36. P. 1635. https://doi.org/10.1007/s10953-007-9212-8
  21. Jolicoeur C., Riedl B., Desrochers D. et al. // J. Solution Chem. 1986. V. 15. P. 109.
  22. Gurney R.W. Ionic processes in solution. New York: McGraw Hill, 1953.
  23. Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Chem. Thermodynamics. 2019. V. 131. P. 40.
  24. Mannar N., Bavoh C.B., Baharudin A.H. et al. // Fluid Phase Equilibria. 2017. V. 454. P. 57. https://doi.org/10.1016/j.?uid.2017.09.012
  25. Yasuda Y., Tochio N., Sakurai M. et al. // J. Chem. Eng. Data. 1998. V. 43. P. 205. https://doi.org/10.1021/je9701792
  26. Siddique J.A., Naqvi S. // J. Chem. Eng. Data. 2010. V. 55. P. 2930. https://doi.org/10.1021/je100190e
  27. Banipal T.S., Singh K., Banipal P.K. // J. Solution Chem. 2007. V. 36. P. 1635. https://doi.org/10.1007/s10953-007-9212-8
  28. Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Chem. Thermodynamics. 2121. V. 161. P. 106552
  29. Chemistry and biochemistry of the amino acids. / Ed. By G.C. Barret. London-N.Y.: Chapman and Hall, 1985
  30. Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. 112 с.
  31. Круглов В.О., Бугаевский А.А. Математика в химической термодинамике. Новосибирск: Наука, 1980. С. 36.
  32. Brinkley S.R., Jr. // J. Chem. Phys. 1947. V. 15. P. 107.
  33. Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200.
  34. Franks F. Water: A comprehensive treatise. V. 3. New York: Plenum Press, 1973.
  35. Kumar H., Kaur K. // J. Chem. Thermodynamics. 2012. V. 5. P. 86.
  36. Iqbal M., Chaudhary M.A. // J. Chem. Thermodynamics. 2010. V. 42. P. 951.
  37. Romero C.M., Esteso M.A., Trujillo G.P. // J. Chem. Eng. Data. 2018. V. 63. № 11. P. 4012. https://doi.org/10.1021/acs.jced.8b00236
  38. Тюнина Е.Ю., Баделин В.Г., Курицына А.А. // Журн. физ. химии. 2020. Т. 94. № 4. С. 557.
  39. Singh S.K., Kishore N. // J. Solution Chem. 2003. V. 32. P. 117.
  40. Kyte J., Doolittle R. // J. Mol. Biol. 1982. V. 157. P. 105.
  41. Rodríguez D.M., Romero C.M. // J. Mol. Liq. 2017. V. 233. V. 487. https://doi.org/10.1016/j.molliq.2017.02.118
  42. Kumar H., Behal I. // J. Chem. Thermodynamics. 2016. V. 102. P. 48. https://doi.org/10.1016/j.jct.2016.06.026
  43. John R., Tangde V.M., Khaty N.T. et al. // J. Ind. Chem. Soc. 2022. V. 99. P. 100370. https://doi.org/10.1016/j.jics.2022.100370
  44. Hepler L.G. // Can. J. Chem. 1969. V. 47. P. 4613.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (62KB)
3.

下载 (133KB)
4.

下载 (117KB)
5.

下载 (31KB)

版权所有 © Е.Ю. Тюнина, Г.Н. Тарасова, 2023

##common.cookie##