Metastable States of a Fluid Inside a Binodal in the Context of Cluster Variation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of the isotherm and molecular distributions inside the binodal is analyzed to solving an Ising model obtained on the basis of cluster variation for planar lattices with coordination numbers 3, 4, 6. It is found that the microscopic approach gives a probabilistic interpretation of the Maxwell macroscopic rule and explains how the isotherm a secant appears between the regions of coexistence of two phases. A region of no solutions (the region of degeneracy) is found inside the binodal, and the critical temperatures of degeneracy at which the nontrivial solution to the equations disappears are calculated for this region. The region of degeneracy inside the binodal expands and approaches the binodal curve as the temperature falls, so the degeneracy curve and the binodal become indistinguishable. Numerical iterative calculations are used to study the dependence of the region of no solution inside the binodal as a cluster grows. The critical temperature of degeneracy asymptotically approaches that of the binodal as the cluster grows. Existing ways of interpreting metastable states are discussed, along with as the correspondence between the new results and previously known mean-field (ignoring correlations) and quasi-chemical (considering only direct correlations) approximations, and an exact result of the Yang–Lee condensation theory.

About the authors

E. V. Votyakov

The Cyprus Institute, Energy Environment and Water Research Center

Email: karaul@gmail.com
2121, Nicosia, Cyprus

Yu. K. Tovbin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: karaul@gmail.com
119991, Moscow, Russia

References

  1. Фаулер Р., Гуггенгейм Э. Статистическая термодинамика, М.: Изд-во. иностр. лит., 1949.
  2. Гиршфельдер Дж., Кертис Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: Изд-во иностр. лит., 1961. 929 с.
  3. Мелвин-Хьюз Е.А. Физическая химия. М.: изд-во иностр. лит., 1962. Кн. 2. 1148 с.
  4. Киреев В.А. Курс физической химии. М.: Химия, 1975. 776 с.
  5. Кривоглаз А.Н., Смирнов А.А. Теория упорядочивающихся сплавов. М.: ГИФМЛ, 1958. 388 с.
  6. Стенли Г. Фазовые переходы и критические явления. М.: Мир. 1973. 400 с.
  7. Хачарутян А.Г. Теория фазовых превращений и структуры твердых растворов. М.: Наука, 1974. 265 с.
  8. Паташинский А.З., Покровский В.П. Флуктуационная теория фазовых переходов. М.: Наука, 1975. 256 с.
  9. Ма Ш. Современная теория критических явлений. М.: Мир, 1980.
  10. Onsager L. // Phys. Rev. 1944. V. 65. P. 117.
  11. Domb C. // Proc. Roy. Soc., 1949. V. A196. P. 36.
  12. Domb C. // Adv. Phys., 1960. V. 9. P. 149.
  13. Хилл Т. Статистическая механика. М.: Изд-во иностр. лит., 1960. 485 с.
  14. Хуанг К. Статистическая механика. М.: Мир, 1966. 520 с.
  15. Вотяков Е.В., Товбин Ю.К. // ЖФХ. 2022. Т. 96. № 3. С. 339.
  16. Kikuchi R. // Phys. Rev. 1951. V. 81. P. 988.
  17. Kikuchi R. // J. Chem. Phys. 1951. V. 19. P. 1230.
  18. Kikuchi R., Brush S.G. // J. Chem. Phys. 1967. V. 47. P. 195.
  19. Barker J.A. // Proc. Royal Soc. London. A. 1953. V. 216. P. 45.
  20. Hijmans J., de Bour J. // Physica. 1955. V. 21. P. 471.
  21. Sanchez J.M., de Fontaine D. // Phys. Rev. B. 1978. V. 17. 2926.
  22. Sanchez F., Ducastelle F., Gratias D. // Physica A. 1984. V. 128. P. 334.
  23. Theory and Applications of the Cluster Variation and Path Probability Methods / Eds. J.L. Moran-Lopez and J.M. Sanchez / New York and London: Plenum Press, 1996. 420 p.
  24. Вотяков Е.В., Товбин Ю.К. // Журн. физ. химии. 2023. Т. 97. В печати.
  25. Yang C.N., Lee T.D. // Phys. Rev. 1952. V. 87. P. 404.
  26. Lee T.D., Yang C.N. // Ibid. 1952. V. 87. P. 410.
  27. Бойко В.Г., Могель Х.-Й., Сысоев В.М., Чалый А.В. // УФН 1991. Т. 161. № 2. С. 77.
  28. Rosengren A., Lapinskas // Phys. Rev. 1993. V. 47. P. 2643.
  29. Vinograd V.L., Putnis A. // Physics and Chemistry of Minerals. 1998. V. 26. P. 135.
  30. Товбин Ю.К. Теория физико-химических процессов на границе газ–твердое тело, М.: Наука, 1990. 288 с. (Tovbin Yu.K., Theory of physical chemistry processes at a gas-solid surface processes, CRC Press, Boca Raton, Fl, 1991).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (211KB)
3.

Download (93KB)
4.

Download (39KB)
5.

Download (61KB)
6.

Download (46KB)

Copyright (c) 2023 Е.В. Вотяков, Ю.К. Товбин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies