Synthesis of Niobium η-Carbide Nb3(Fe,Al)3C by Mechanical Alloying in a Liquid Organic Medium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The η-carbide Nb3(Fe,Al)3C phase was synthesized for the first time by mechanical alloying of Nb, Al, and Fe in petroleum ether followed by annealing. The synthesis of carbide occurs due to carbon accumulated from the grinding medium. If mechanical alloying is performed using steel vials and balls, the composites based on η-carbide can be obtained without additional introduction of iron; contaminant iron is involved in the formation of Nb3(Fe,Al)3C.

Sobre autores

M. Eryomina

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: mrere@mail.ru
426067, Izhevsk, Russia

S. Lomayeva

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: mrere@mail.ru
426067, Izhevsk, Russia

Bibliografia

  1. Chaus A.S., Braèík M., Sahul M., Tittel V. // Metal Sci. Heat Treatment 2020. V. 62. № 7–8. P. 489. https://doi.org/10.1007/s11041-020-00590-5
  2. Zhan J.M., Bi H.Y., Li M.C. // Sci. China Tech. Sci. 2022. V. 65. P. 169. https://doi.org/10.1007/s11431-021-1865-7
  3. Malfliet A., Mompiou F., Chassagne F. et al. // Met. Mater. Trans. A. 2011. V. 42. № 3333. https://doi.org/10.1007/s11661-011-0745-5
  4. Shengda G., Tao S., Rui B. et al. // Rare Metal Mater. Eng. 2018. V. 47. № 7. P. 1986. https://doi.org/10.1016/S1875-5372(18)30169-3
  5. Kwon Y.J., Yoo J.S., Park S.K. et al. // J. Korean Soc. Heat Treat. 2018. V. 31. № 4. P. 165. https://doi.org/10.12656/jksht.2018.31.4.165
  6. Eryomina M.A., Lomayeva S.F., Kharanzhevsky E.V. et al. // Proc. Struct. Integrity. 2021. V. 32. P. 284. https://doi.org/10.1016/j.prostr.2021.09.040
  7. Michalchuk A.A.L., Boldyreva E.V., Belenguer A.M. et al. // Frontiers in Chemistry. 2021. V. 9. № 685789. https://doi.org/10.3389/fchem.2021.685789
  8. Konstanchuk I.G., Boldyrev V.V., Bokhonov B.B., Ivanov E.Yu. // Russ. J. Phys. Chem. A. 2001. V. 75. № 10. P. 1723.
  9. Reiffenstein E., Nowotny H., Benesovsky F. // Mh. Chem. 1965. V. 96. № 5. P. 1543. https://doi.org/10.1007/bf00902087
  10. Eryomina M.A., Lomayeva S.F., Lyalina N.V. et al. // Mater. Tod.: Proc. 2020. V. 25. P. 356. https://doi.org/10.1016/j.matpr.2019.12.089
  11. Eryomina M.A., Lomayeva S.F., Kharanzhevsky E.V. et al. // Int. J. Refract. Met. Hard Mater. 2022. V. 105. P. 105837. https://doi.org/10.1016/j.ijrmhm.2022.105837
  12. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306
  13. Kaneyoshi T., Takahashi T., Motoyama M. // Scr. Metall. Mater. 1993. V. 29. P. 1547.
  14. Lomayeva S.F. // Phys. Met. Metallogr. 2007. V. 104. № 4. P. 388. https://doi.org/10.1134/S0031918X07100092
  15. Hellstern E., Schultz L., Bormann R., Lee D. // Appl. Phys. Lett. 1988. V. 53. P. 1399. https://doi.org/10.1063/1.99989
  16. Paul E., Swartzendruber L.J. // Bull. Alloy Phase Diagr. 1986. V. 7. P. 248.
  17. Jorda J.L., Flükiger R., Muller J. // J. Less-common Met. 1980. V. 75. P. 227. https://doi.org/10.1016/0022-5088(80)90120-4
  18. Komjathy S. // J. Less-Common Met.1960. V. 2. P. 466.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (82KB)
3.

Baixar (104KB)
4.

Baixar (96KB)
5.

Baixar (111KB)
6.

Baixar (37KB)

Declaração de direitos autorais © М.А. Еремина, С.Ф. Ломаева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies