Equation of State of an Infinitely Dilute Solution of Argon in Water

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new equation of state is proposed for a solution of gas at infinite dilution, based on considering the interaction between a gas and a solvent at the microscopic level. It is used to describe the properties of an infinitely dilute aqueous solution of argon in a wide range of temperatures and pressures, including the supercritical region of water. It is shown that the resulting equation is capable of predicting the properties of an aqueous solution of an inert gas with high accuracy, based on a limited set of data at moderate temperatures.

Sobre autores

A. Novikov

Faculty of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: novikov.chem@gmail.com
119991, Moscow, Russia

Bibliografia

  1. Plyasunov A.V., Korzhinskaya V.S., O’Connell J.P. // Fluid Phase Equilib. 2019. V. 498. P. 9.
  2. Plyasunov A.V., Korzhinskaya V.S. // Fluid Phase Equilib. 2020. V. 521. P. 112690.
  3. Plyasunov A.V., Korzhinskaya V.S. // Fluid Phase Equilib. 2021. V. 529. P. 112872.
  4. Majer V., Sedlbauer J., Wood R.H. // Aqueous Systems at Elevated Temperatures and Pressures / Ed. by D.A. Palmer. N.Y.: Elsevier Ltd., 2004. P. 99.
  5. Sedlbauer J., O’Connell J.P., Wood R.H. // Chem. Geol. 2000. V. 163. № 1–4. P. 43.
  6. Akinfiev N.N., Diamond L.W. // Geochim. Cosmochim. Acta. 2003. V. 67. № 4. P. 613.
  7. Plyasunov A.V., O’Connell J.P., Wood R.H. // Geochim. Cosmochim. Acta. 2000. V. 64, № 3. P. 495.
  8. Plyasunov A.V., O’Connell J.P., Wood R.H. et al. // Geochim. Cosmochim. Acta. 2000. V. 64. № 16. P. 2779.
  9. Plyasunov A.V., O’Connell J.P., Wood R.H. et al. // Fluid Phase Equilib. 2001. V. 183–184. P. 133.
  10. Mei Y., Liu W., Brugger J. et al. // Geochim. Cosmochim. Acta. 2018. V. 226. P. 84.
  11. Hu Y., Lüdecke D., Prausnitz J. // Fluid Phase Equilib. 1984. V. 17. № 2. P. 217.
  12. Hu Y., Xu Y.-N., Prausnitz J. // Fluid Phase Equilib. 1985. V. 23. № 1. P. 15.
  13. Ben-Naim A., Marcus Y. // J. Chem. Phys. 1984. V. 81. № 4. P. 2016.
  14. Cooney W.R., Connell J.P. // Chem. Eng. Commun. 1987. V. 56. № 1–6. P. 341.
  15. O’Connell J.P., Sharygin A.V., Wood R.H. // Ind. Eng. Chem. Res. 1996. V. 35. № 8. P. 2808.
  16. de Souza L.E.S., Ben-Amotz D. // J. Chem. Phys. 1994. V. 101. № 11. P. 9858.
  17. Ben-Amotz D., Omelyan I.P. // J. Chem. Phys. 2001. V. 115. № 20. P. 9401.
  18. Matyushov D.V., Ladanyi B.M. // J. Chem. Phys. 1997. V. 107. № 15. P. 5815.
  19. Pierotti R.A. // Chem. Rev. 1976. V. 76. № 6. P. 717.
  20. Ben-Amotz D. // J. Chem. Phys. 2005. V. 123. № 18. P. 184504.
  21. Pohorille A., Pratt L.R. // J. Am. Chem. Soc. 1990. V. 112. № 13. P. 5066.
  22. Floris F.M., Selmi M., Tani A. et al. // J. Chem. Phys. 1997. V. 107. № 16. P. 6353.
  23. Ashbaugh H.S., Pratt L.R. // Rev. Mod. Phys. 2006. V. 78. № 1. P. 159.
  24. Bickes R.W., Duquette G., van den Meijdenberg C.J.N. et al. // J. Phys. B At. Mol. Phys. 1975. V. 8. № 18. P. 3034.
  25. Cao D., Wang W. // Chem. Eng. Sci. 2000. V. 55. № 11. P. 2099.
  26. Lee R.J., Chao K.C. // Mol. Phys. 1987. V. 61. № 6. P. 1431.
  27. Trejos V.M., Pizio O., Sokolowski S. // Fluid Phase Equilib. 2018. V. 473. P. 145.
  28. Neff R.O., McQuarrie D.A. // J. Phys. Chem. 1973. V. 77. № 3. P. 413.
  29. Moré J.J. // Numerical analysis. 1978. P. 105.
  30. Wagner W., Pruß A. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 2. P. 387.
  31. Fernández D.P., Goodwin A.R.H., Lemmon E.W. et al. // J. Phys. Chem. Ref. Data. 1997. V. 26. № 4. P. 1125.
  32. Voskov A.L., Kovalenko N.A. // Fluid Phase Equilib. 2020. V. 507. P. 112419.
  33. Potter R.W., Clynne M.A. // J. Solution Chem. 1978. V. 7. № 11. P. 837.
  34. Crovetto R., Fernández-Prini R., Japas M.L. // J. Chem. Phys. 1982. V. 76. № 2. P. 1077.
  35. Solubility Data Series. Volume 4. Argon / Ed. by H.L. Clever. N.Y.: Pergamon Press, 1980. 331 p.
  36. Rettich T.R., Battino R., Wilhelm E. // J. Solution Chem. 1992. V. 21. № 9. P. 987.
  37. Krause D., Benson B.B. // J. Solution Chem. 1989. V. 18. № 9. P. 823.
  38. Belonoshko A., Saxena S. // Geochim. Cosmochim. Acta. 1992. V. 56. № 10. P. 3611.
  39. Belonoshko A.B., Shi P., Saxena S.K. // Comput. Geosci. 1992. V. 18. № 9. P. 1267.
  40. Olofsson G., Oshodj A.A., Qvarnström E. et al. // J. Chem. Thermodyn. 1984. V. 16. № 11. P. 1041.
  41. Dec S.F., Gill S.J. // J. Solution Chem. 1985. V. 14. № 6. P. 417.
  42. Крестов Г.А., Пророков В.Н., Долотов В.В. // Журн. физ. химии. 1982. Т. 56. № 1. С. 238.
  43. Alexander D.M. // J. Phys. Chem. 1959. V. 63. № 6. P. 994.
  44. Watanabe H., Iizuka K. // Metrologia. 1985. V. 21. № 1. P. 19.
  45. Zhou T., Battino R. // J. Chem. Eng. Data. 2001. V. 46. № 2. P. 331.
  46. Biggerstaff D.R., White D.E., Wood R.H. // J. Phys. Chem. 1985. V. 89. № 20. P. 4378.
  47. Biggerstaff D.R., Wood R.H. // J. Phys. Chem. 1988. V. 92. № 7. P. 1994.
  48. Biggerstaff D.R., Wood R.H. // J. Phys. Chem. 1988. V. 92. № 7. P. 1988.
  49. Nezbeda I., Aim K. // Fluid Phase Equilib. 1984. V. 17. № 1. P. 1.
  50. Hodges M.P., Wheatley R.J., Harvey A.H. // J. Chem. Phys. 2002. V. 117. № 15. P. 7169.
  51. Broadbent R.D., Neilson G.W. // J. Chem. Phys. 1994. Vol. 100, № 10. P. 7543.
  52. Sullivan D.M., Neilson G.W., Fischer H.E. // J. Chem. Phys. 2001. V. 115. № 1. P. 339.
  53. Botti A., Bruni F., Isopo A. et al. // J. Chem. Phys. 2003. V. 118. № 1. P. 235.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (126KB)
3.

Baixar (27KB)
4.

Baixar (147KB)
5.

Baixar (118KB)
6.

Baixar (156KB)
7.

Baixar (152KB)
8.

Baixar (143KB)

Declaração de direitos autorais © А.А. Новиков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies