Calculating Vertical Ionization Energies of Hydrated Biological Chromophores Based on Multiconfigurational Perturbation Theory

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Here we introduce a methodology for calculating vertical detachment energies (VDE) and vertical ionization energies (VIE) of anionic and neutral chromophores in aqueous environment. The proposed method is based on the extended multiconfigurational quasidegenerate perturbation theory coupled to the explicit treatment of solvent effects in the frame of the effective fragment potential method. We show that the solvent polarization contribution must be considered for getting accurate quantitative estimations of VDEs and VIEs. The calculated values of VDE for phenolate (7.3 eV) and VIE for phenol (7.9 eV) in aqueous environment are in good agreement with the experimental results obtained using X-ray and multiphoton UV photoelectron spectroscopy. Our approach will be useful for studying processes of photoinduced electron transfer from anionic as well as neutral biological chromophores in aqueous solution.

Sobre autores

A. Boichenko

Department of Chemistry, Lomonosov Moscow State University

Email: abochenkova@qpd.chem.msu.ru
Moscow, Russia

A. Bochenkova

Department of Chemistry, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: abochenkova@qpd.chem.msu.ru
Moscow, Russia

Bibliografia

  1. Henley A., Fielding H.H. // Int. Rev. Phys. Chem. 2019. V. 38. P. 1.
  2. Bull J., Anstöter, C., Verlet J. // Nat. Commun. 2019. V. 10. P. 5820.
  3. Faubel M., Siefermann K.R., Liu Y. et al. // Acc. Chem. Res. 2012. V. 45. P. 120.
  4. Seidel R., Winter B., Bradforth S.E. // Annu. Rev. Phys. Chem. 2016. V. 67. P. 283.
  5. Riley J.W., Wang B., Woodhouse J.L. et al. // J. Phys. Chem. Lett. 2018. V. 9. P. 678.
  6. Gordon M.S., Freitag M.A., Bandyopadhyay P. et al. // J. Phys. Chem. A. 2001. V. 105. P. 293.
  7. Gordon M.S., Fedorov D.G., Pruitt S.R. et al. // Chem. Rev. 2012. V. 112. P. 632.
  8. Ghosh D., Isayev O., Slipchenko L.V. et al. // J. Phys. Chem. A. 2011. V. 115. P. 6028.
  9. Ghosh D., Roy A., Seidel R. et al. // J. Phys. Chem. B. 2012. V. 116. P. 7269.
  10. Henley A., Riley J., Wang B. et al. // Faraday Discuss. 2020. V. 221. P. 202.
  11. Granovsky A.A. // J. Chem. Phys. 2011. V. 134. P. 214113.
  12. Acharya A., Bogdanov A.M., Grigorenko B.L. et al. // Chem. Rev. 2017. V. 117. P. 758.
  13. Phillips J.C., Braun R., Wang W. et al. // J. Comp. Chem. 2005. V. 26. P. 1781.
  14. Granovsky A.A. Firefly version 8.2.0. http://classic.chem.msu.su/gran/firefly.
  15. Scholz M.S., Fortune W.G., Tau O., Fielding H.H. // J. Phys. Chem. Lett. 2022. V. 13. P. 6889.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (849KB)
3.

Baixar (20KB)
4.

Baixar (20KB)

Declaração de direitos autorais © А.Н. Бойченко, А.В. Боченкова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies