Low-Temperature Synthesis of Metal–Organic Coordination Polymers Based on Oxo-centered Iron Complexes: Magnetic and Adsorption Properties

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A low-temperature approach is described for preparing mesoporous metal–organic frameworks using nontoxic solvents and pre-synthesized polynuclear iron complexes as secondary building units. The obtained compounds are characterized via IR and Mössbauer spectroscopy, X-ray powder diffraction analysis, thermogravimetric analysis, and differential scanning calorimetry. The specific surface of the obtained compounds and their adsorption capacity for organic dyes methylene blue and Congo red are determined. Particular attention is given to dependences M(T) and M(H) of the magnetic moment of the obtained samples on temperature and strength of the magnetic field, respectively. The dyes’ adsorption characteristics and efficiency of sorption are determined by varying such factors as period of contact, amount of adsorbent, and temperature. The removal of dye at a concentration above 90% is observed as early as 20–30 min after the beginning of adsorption. Langmuir and Freundlich isotherms are used to describe the experimental data. It is shown that the process of adsorption at the initial concentration of the dye is described most accurately by the Langmuir adsorption isotherm. The rate constants of adsorption are calculated using pseudo-second order kinetic equations.

Авторлар туралы

R. Baimuratova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dzhardim@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

V. Zhinzhilo

Southern Federal University

Email: dzhardim@icp.ac.ru
344006, Rostov-on-Don, Russia

I. Uflyand

Southern Federal University

Email: dzhardim@icp.ac.ru
344006, Rostov-on-Don, Russia

A. Dmitriev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dzhardim@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

M. Zhidkov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dzhardim@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

N. Ovanesyan

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dzhardim@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

G. Kugabaeva

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: dzhardim@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

G. Dzhardimalieva

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Aviation Institute (National Research University)

Хат алмасуға жауапты Автор.
Email: dzhardim@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia; 125993, Moscow, Russia

Әдебиет тізімі

  1. Batten S.R., Champness N.R., Chen X.M. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1715. https://doi.org/10.1351/PAC-REC-12-11-20
  2. Lin R.-B., Xiang S., Xing H. et al. // Coord. Chem. Rev. 2017. V. 378. P. 87. https://doi.org/10.1016/j.ccr.2017.09.027
  3. Pariichuk M.Y., Kopytin K.A., Onuchak L.A. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 806. https://doi.org/10.1134/S0036024421040208
  4. Lázaro I.A., Forgan R.S. // Coord. Chem. Rev. 2019. V. 380. P. 230. https://doi.org/10.1016/j.ccr.2018.09.009
  5. Lee S., Kapustin E.A., Yaghi O.M. // Science. 2017. V. 353. № 630. P. 808. https://doi.org/10.1126/science.aaf9135
  6. Kustov L.M., Isaeva V.I., Přech J., Bisht K.K. // Mendeleev Commun. 2019. V. 29. № 4. P. 361. https://doi.org/10.1016/j.mencom.2019.07.001
  7. Isaeva V.I., Nefedov O.M., Kustov L.M. // Catalysts. 2018. V. 8. № 9. P. 1. https://doi.org/10.3390/catal8090368
  8. Golovashova E.S., Kulev V.A., Kudrik E.V. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. № 3. P. 638. https://doi.org/10.1134/S0036024420030115
  9. Hu H., He Y.P., Zhang Y.L. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. S44. https://doi.org/10.1134/S0036024422140138
  10. Jabarian S., Ghaffarinejad A. // J. Inorg. Organomet. Polym. 2019. V. 29. P. 1565. https://doi.org/10.1007/s10904-019-01120-4
  11. Chen D., Zhao J., Zhang P., Dai S. // Polyhedron. 2019. V. 162. P. 59–64. https://doi.org/10.1016/j.poly.2019.01.024
  12. Khan N.A., Jhung S.H. // Coord. Chem. Rev. 2015. V. 285. P. 11. https://doi.org/10.1016/j.ccr.2014.10.008
  13. Sargazi G., Afzali D., Mostafavi A. // Ultrason. Sonochem. 2018. V. 41. P. 234. https://doi.org/10.1016/j.ultsonch.2017.09.046
  14. Burgaz E., Erciyes A., Andac M., Andac O. // Inorg. Chim. Acta. 2019. V. 485. P. 118. https://doi.org/10.1016/j.ica.2018.10.014
  15. Chen Y., Li S., Pei X. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 10. P. 3419. https://doi.org/10.1002/anie.201511063
  16. Zhang R., Ji S., Wang N. et al. // Angew. Chem. Int. Ed. 2014. V. 53. № 37. P. 9775. https://doi.org/10.1002/anie.201403978
  17. Kalmutzki M.J., Hanikel N., Yaghi O.M. // Sci. Adv. 2018. V. 4. № 10. P. eaat9180. https://doi.org/10.1126/sciadv.aat9180
  18. Feng L., Wang K.-Y., Powell J., Zhou H.-C. // Matter. 2019. V. 1. P. 801. https://doi.org/10.1016/j.matt.2019.08.022
  19. Xue Y., Zheng S., Xue H., Pang H. // J. Mater. Chem. A. 2019. V. 7. P. 7301. https://doi.org/10.1039/c8ta12178h
  20. Baumann A.E., Burns D.A., Liu B., Thoi V.S. // Commun. Chem. V. 2. № 1. P. 86. https://doi.org/10.1038/s42004-019-0184-6
  21. Wu H., Chua Y.S., Krungleviciute V. // J. Am. Chem. Soc. 2013. V. 135. № 28. P. 10525. https://doi.org/10.1021/ja404514r
  22. Dzhardimalieva G.I., Baimuratova R.K., Knerelman E.I. et al. // Polymers. 2020. V. 12. P. 1024. https://doi.org/10.3390/polym12051024
  23. Chen Y., Ma S. // Dalton Trans. 2016. V. 45. P. 9744. https://doi.org/10.1039/C6DT00325G
  24. Cheetham A.K., Rao C.N.R., Feller R.K. // Chem. Commun. 2006. V. 46. P. 4780–4795. https://doi.org/10.1039/B610264F
  25. Baimuratova R.K., Golubeva N.D., Dzhardimalieva G.I. et al. // KEM. 2019. V. 816. P. 108. https://doi.org/10.4028/www.scientific.net/KEM.816.108
  26. Au V.K.-M. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.00708
  27. Khan N.A., Hasan Z., Jhung S.H. // J. Hazard. Mater. 2013. V. 244–245. P. 444. https://doi.org/10.1016/j.jhazmat.2012.11.011
  28. Katheresan V., Kansedo J., Lau S.Y. // J. Environ. Chem. Eng. 2018. V. 6. P. 4676. https://doi.org/10.1016/j.jece.2018.06.060
  29. Pakamorė I., Rousseau J., Rousseau C. et al. // Green Chem. 2018. V. 20. P. 5292. https://doi.org/10.1039/C8GC02312C
  30. Huo S.-H., Yan X.-P. // J. Mater. Chem. 2012. V. 22. № 15. P. 7449. https://doi.org/10.1039/C2JM16513A
  31. Robson R., Abrahams B.F., Batten S.R. et al. // ACS Symp. Ser. 1992. V. 499. № 19. P. 256. https://doi.org/10.1021/bk-1992-0499.ch019
  32. Rosi N.L., Eddaoudi M., Kim J. et al. // Cryst. Eng. Comm. 2002. V. 4. № 68. P. 401. https://doi.org/10.1039/B203193K
  33. Schoedel A., Zaworotko M.J. // Chem. Sci. 2014. V. 5. № 4. P. 1269. https://doi.org/10.1039/C4SC00171K
  34. Zou M., Dong M., Zhao T. // IJMS. 2022. V. 23. № 16. P. 9396 https://doi.org/10.3390/ijms23169396
  35. Kuznicki A., Lorzing G.R., Bloch E.D. // Chem. Commun. The Royal Society of Chemistry, 2021. V. 57. № 67. P. 8312. https://doi.org/10.1039/D1CC02104D
  36. Chen X.Y., Hoang V.-T., Rodrigue D., Kaliaguin, S. RSC Adv. The Royal Society of Chemistry, 2013. V. 5. № 46. P. 24266. https://doi.org/10.1039/C3RA43486A
  37. Zorainy M.Y., Gar Alalm M., Kaliaguine S., Boffito D.C. // J. Mater. Chem. A. 2021. V. 9. № 39. P. 22159. https://doi.org/10.1039/D1TA06238G
  38. Carson F., Su J., Platero-Prats A.E. et al. // Crystal Growth & Design. 2013. V. 13. № 11. P. 5036. https://doi.org/10.1021/cg4012058
  39. Millange F., Guillou N., Walton R.I. et al. // Chem. Commun. The Royal Society of Chemistry. 2008. № 39. P. 4732. https://doi.org/10.1039/B809419E
  40. Shin J., Kim M., Cirera J. et. al. // J. Mater. Chem. A. 2015. V. 3. № 8. P. 4738. https://doi.org/10.1039/C4TA06694D
  41. Pham H., Ramos K., Sua A. et al. // ACS Omega. 2020. V. 5. № 7. P. 3418. https://doi.org/10.1021/acsomega.9b03696
  42. Ma M., Bétard A., Weber I. et al. // Crystal Growth & Design. American Chemical Society. 2013. V. 13. № 6. P. 2286. https://doi.org/10.1021/cg301738p
  43. Xuan Huynh N.T., Chihaia V., Son D.N. // J Mater Sci. 2019. V. 54. № 5. P. 3994. https://doi.org/10.1007/s10853-018-3140-4
  44. McKinlay A.C., Morris R.E., Horcajada P. et al. // Angewandte Chemie International Edition. 2010. V. 49. № 36. P. 6260.https://doi.org/10.1002/anie.201000048
  45. Zheng Y.-Z., Tong M.-L., Xue W. et al. // Angew. Chem. Int. Ed. 2007. V. 46. № 32. P. 6076. https://doi.org/10.1002/anie.200701954
  46. Laurikėnas A., Barkauskas J., Reklaitis J. et al. // Lith. J. Phys. 2016. V. 56. № 1. P. 35. https://doi.org/10.3952/physics.v56i1.3274
  47. Simonin J.-P. // Chem. Eng. J. 2016. V. 300. P. 254. https://doi.org/10.1016/j.cej.2016.04.079
  48. Yuh-Shan H. // Scientometrics. 2004. V. 59. P. 171. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
  49. Ho Y.S., Ng J.C.Y., McKay G. // Separation and Purification Methods. 2000. V. 29. P. 189. https://doi.org/10.1081/SPM-100100009
  50. Osmari T.A., Gallon R., Schwaab M. et al. // Adsorp. Sci. Technol. 2013. V. 31. № 5. P. 433 https://doi.org/10.1260/0263-6174.31.5.433
  51. Zhang H., Gong X., Song Z. et al. // Optical Materials. 2021. V. 113. P. 110865. https://doi.org/10.1016/j.optmat.2021.110865
  52. Horcajada P., Salles F., Wuttke S. et al. // J. Am. Chem. Soc. 2011. V. 133. № 44. P. 17839. https://doi.org/10.1021/ja206936e
  53. Aguiar L.W., Otto G.P., Kupfer V.L. et al. // Materials Letters. 2020. V. 276. P. 128127. https://doi.org/10.1016/j.matlet.2020.128127
  54. Zorainy M.Y., Kaliaguine S., Gobara M. et al. // J. Inorg Organomet Polym. 2022. V. 32. № 7. P. 2538. https://doi.org/10.1007/s10904-022-02353-6.1
  55. Guo M., Li H. // Front. Energy Res. 2021. V. 9. P. 781008.https://doi.org/10.3389/fenrg.2021.781008
  56. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 6th ed. Hoboken, N.J: Wiley, 2009. 419 p.
  57. Deacon G.B., Huber F., Phillips R.J. // Inorganica Chimica Acta. 1985. V. 104. № 1. P. 41. https://doi.org/10.1016/s0020-1693(00)83783-4
  58. Khamizov R.K.A. // Russ. J. Phys. Chem. A. 2020. V. 94. № 1. P. 171.https://doi.org/10.1134/S0036024420010148
  59. McKinlay A.C., Eubank J.F., Wuttke S. et al. // Chem. Mater. 2013. V. 25. P. 1592. https://doi.org/10.1021/cm304037x
  60. Zango Z.U., Abu Bakar N.H.H., Sambudi N.S. et al. // J. Environ. Chem. Eng. 2020. V. 8. P. 103544.https://doi.org/10.1016/j.jece.2019.103544
  61. Zhao X., Liu S., Tang Z. et al. // Sci. Rep. 2015. V. 5. P. 11849. https://doi.org/10.1038/srep11849
  62. Bain G.A., Berry J.F. // J. Chem. Educ. 2008. V. 85. № 4. P. 532. https://doi.org/10.1021/ed085p532
  63. Boča R. A Handbook of Magnetochemical Formulae / R. Boča, 1st ed. 2012-e изд., London; Waltham, MA: Elsevier, 2012. 991 c.
  64. Dziobkowski C., Wrobleski J.T., Brown D.B. // Inorg. Chem. 1981. V. 20. № 3. P. 671. https://doi.org/10.1021/ic50217a007

© Р.К. Баймуратова, В.А. Жинжило, И.Е. Уфлянд, А.И. Дмитриев, М.В. Жидков, Н.С. Ованесян, Г.Д. Кугабаева, Г.И. Джардималиева, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>