Experimental and Theoretical Investigation of Inclusion Complexes of β-Cyclodextrin with Fingolimod

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The solubilizing effect of β-cyclodextrin on fingolimod, a new generation immunosuppressant, is studied for the first time. A possible 20× increase in the solubility of fingolimod due to the penetration of the hydrophobic fragment of the drug molecule into the macrocyclic cavity of the cyclodextrin is shown. Data driven 1H NMR spectroscopy and computer modeling suggest the configuration of the resulting inclusion complexes. The constant of the complex’s stability and its energy of complexation are calculated, and the formation of hydrogen bonds between fingolimod and β-cyclodextrin is considered.

Sobre autores

A. Garibyan

G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Email: ivt@isc-ras.ru
153025, Ivanovo, Russia

E. Delyagina

G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences; Ivanovo State University

Email: ivt@isc-ras.ru
153045, Ivanovo, Russia; 153025, Ivanovo, Russia

M. Antipova

G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Email: ivt@isc-ras.ru
153025, Ivanovo, Russia

E. Odintsova

G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Email: ivt@isc-ras.ru
153025, Ivanovo, Russia

V. Petrenko

G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Email: ivt@isc-ras.ru
153045, Ivanovo, Russia

I. Terekhova

G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ivt@isc-ras.ru
153025, Ivanovo, Russia

Bibliografia

  1. Salem H., Abo Elsoud F.A., Heshmat D. // Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2021. V. 250. P. 119331. https://doi.org/10.1016/j.saa.2020.119331
  2. Jaafar N., Zeineddine M., Massouh J. et al. // Mult. Scler. Relat. 2019. V. 36. P. 101437. https://doi.org/10.1016/j.msard.2019.101437
  3. Strader C.R., Pearce C.J., Orberlies N.H. // J. Nat. Prod. 2011. V. 74. № 4. P. 900. https:// doi.org/https://doi.org/10.1021/np2000528
  4. Al-Izki S., Pryce G., Jackson S.J. et al. // Mult. Scler. J. 2011. V. 17. № 8. P. 939. https://doi.org/10.1177/1352458511400476
  5. Pelletier D., Hafler M.D., Hafler D.A. // N. Engl. J. Med. 2012. V. 366. P. 339. https://doi.org/10.1056/NEJMct1101691
  6. Aytan N., Choi J.-K., Carreras I. // Sci. Rep. 2016. V. 6. № 1. P. 24939. https://doi.org/10.1038/srep24939
  7. Nasser A. // J. Basic. Clin. Physiol. Pharmacol. 2019. V. 30. № 5. P. 31469655. https://doi.org/10.1515/jbcpp-2019-0063
  8. Medeiros da Silva M., Odebrecht de Souza R., Gonçalves M.V.M. // J. Neuroimmunol. 2022. V. 2. P. 100071. https://doi.org/10.1016/j.nerep.2022.100071
  9. Gomez-Mayordomo V., Montero-Escribano P., Matías-Guiu J.A. et al. // J. Med. Virol. 2020. V. 93. № 1. P. 546. https://doi.org/10.1002/jmv.26279
  10. Mona J., Kuo C.-J., Perevedentseva E. et al. // Diam. Relat. Mater. 2013. V. 39. P. 73. https://doi.org/10.1016/j.diamond.2013.08.001
  11. Center for drug Evaluation and Research. 2010. https://www.accessdata.fda.gov/drugsatfda_docs/nda/ 2010/022527orig1s000clinpharmr.pdf
  12. Tamakuwala M., Stagni G. // AAPS Pharm. Sci. Tech. 2016. V. 17. P. 907. https://doi.org/10.1208/s12249-015-0415-9
  13. Ward M.D., Jones D.E., Goldman M.D. // Expert Opin. Drug Saf. 2014. V. 13. P. 989. https://doi.org/10.1517/14740338.2014.920820
  14. Miranda R.R., Ferreira N.N., de Souza E.E. et al. // ACS Appl. Bio Mater. 2022. V. 5. P. 3371. https://doi.org/10.1021/acsabm.2c00349
  15. Zeraatpisheh Z., Mirzaei E., Nami M. et al. // Eur. J. Neurosci. 2021. V. 54. № 4. P. 5620. https://doi.org/10.1111/ejn.15391
  16. Shirmard L.R., Ghofrani M., Javan N.B. et al. // Drug Dev. Ind. Pharm. 2020. V. 46. № 2. P. 318. https://doi.org/10.1080/03639045.2020.1721524
  17. Shahsavari S., Shirmard L.R., Amini M. et al. // J. Pharm. Sci. 2016. V. 106. P. 176. https://doi.org/10.1016/j.xphs.2016.07.026
  18. Javan N.B., Shirmard L.R., Omid N.J. et al. // J. Microencapsul. 2016. V. 33. № 5. P. 1. https://doi.org/10.3109/10837450.2015.1108982
  19. Zou X., Jiang Z., Li L. et al. // Artif. Cells Nanomed. Biotechnol. 2021. V. 49. № 1. P. 83. https://doi.org/10.1080/21691401.2021.1871620
  20. Jacob S., Nair A.B. // Drug Dev. Res. 2018. V. 79. № 5. P. 201. https://doi.org/10.1002/ddr.21452
  21. Terekhova I., Kritskiy I., Agafonov M. et al. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 9102. https://doi.org/10.3390/ijms21239102
  22. Garibyan A., Delyagina E., Agafonov M. et al. // J. Mol. Liq. 2022. V. 360 P. 119548. https://doi.org/10.1016/j.molliq.2022.119548
  23. Saokham P., Muankaew C., Jansook P. et al. // Molecules. 2018. V. 23. № 5. P. 1161. https://doi.org/10.3390/molecules23051161
  24. dos Passos Menezes P., de Araújo Andrade T., Frank L.A. et al. // Int. J. Pharm. 2019. V. 559. P. 312. https://doi.org/10.1016/j.ijpharm.2019.01.041
  25. Job P. // Annual Chemistry. 1928. V. 9. P. 113.
  26. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098. https://doi.org/10.1103/PhysRevA.38.3098
  27. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  28. Frisch M.J., Trucks G.W., Schlegel H.B. et al.// Wallingford, CT, USA, 2016
  29. Morris G.M., Huey R., Lindstrom W. et al. // J. Comp. Chem. 2009. V. 16. P. 2785. https://doi.org/10.1002/jcc.21256
  30. GROMACS 2019.6. https://manual.gromacs.org/documentation/2019.6.
  31. Nose S. // Mol. Phys. 1984. V. 52. P. 255. https://doi.org/10.1080/00268978400101201
  32. Hoover W.G. // Phys. Rev. A. 1985. V. 31. P. 1695. https://doi.org/10.1103/PhysRevA.31.1695
  33. Allen M.P., Tildesley D.J. // Computer Simulation of Liquids, Clarendon Press, London, 1987.
  34. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
  35. Essmann M.U., Perera L., Berkowitz M.L. et al. // J. Chem. Phys. 1995. V. 103. P. 8577. https://doi.org/10.1063/1.470117
  36. Hess M.B., Bekker H., Berendsen H.J.C. et al. // J. Comput. 1997. V. 18. № 12. P. 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
  37. Jorgensen W.L., Tirado-Rives J. // PNAS. 2005. V. 102. P. 6665. https://doi.org/10.1073/pnas.0408037102
  38. Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. P. 3864. https://doi.org/10.1021/acs.jpcb.7b00272
  39. Dodda L.S., de Vaca I.C., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. Web Server issue W331. https://doi.org/10.1093/nar/gkx312
  40. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. P. 11225. https://doi.org/10.1021/ja9621760
  41. Humphrey W., Dalke A., Schulten K. // J. Mol. Graph. 1996. V. 14. P. 33. https://doi.org/10.1016/0263-7855(96)00018-5
  42. Higuchi T., Connors K. // Adv. Anal. Chem. Instrum. 1964. V. 4. P. 117.
  43. Saokham P., Muankaew C., Jansook P. et al. // Molecules. 2018. V. 23. № 5. P. 1161. https://doi.org/10.3390/molecules23051161
  44. Prajapati M., Loftsson T. // J. Drug Deliv. Sci. Technol. 2022. V. 69. P. 103106. https://doi.org/10.1016/j.jddst.2022.103106
  45. Szejtli J. // Chem. Rev. 1998. V. 98. P. 1743. https://doi.org/10.1021/cr970022c
  46. Jacob S., Nair A.B. // Drug Dev. Res. 2018. V. 79. P. 201. https://doi.org/10.1002/ddr.21452

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (29KB)
3.

Baixar (23KB)
4.

Baixar (27KB)
5.

Baixar (79KB)
6.

Baixar (427KB)
7.

Baixar (256KB)
8.

Baixar (83KB)
9.

Baixar (179KB)

Declaração de direitos autorais © А.А. Гарибян, Е.С. Делягина, М.Л. Антипова, Е.Г. Одинцова, В.Е. Петренко, И.В. Терехова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies