Physicochemical Approaches to the Study of the Antioxidant Activity of Glycyrrhizin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The review presents an attempt to collect and systematize the available data on the antioxidant activity of glycyrrhizin obtained by various physicochemical methods and to stimulate further discussions on the mechanisms of its activity and prospects for its use as a multifunctional drug delivery system.

作者简介

N. Polyakov

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences; Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

Email: polyakov@kinetics.nsc.ru
630090, Novosibirsk, Russia; 630128, Novosibirsk, Russia

T. Leshina

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: polyakov@kinetics.nsc.ru
630090, Novosibirsk, Russia

参考

  1. Толстиков Г.А., Балтина Л.А., Гранкина В.П., Кондратенко P.M. Солодка: биоразнообразие, химия, применение в медицине. Новосибирск: Академическое издательство “Гео”, 2007. 311 с.
  2. Shibata S. // Yakugaku Zasshi - Journal of the Pharmaceutical Society of Japan. 2000. V. 120(10). P. 849. https://doi.org/10.1248/yakushi1947.120.10_849
  3. Selyutina O.Yu., Polyakov N.E. // Int. J. Pharm. 2019. V. 559. P. 271.
  4. Fiore C., Eisenhut M., Ragazzi E. et al. // J. Ethnopharmacol. 2005. V. 99. P. 317.
  5. Ming L.J., Yin A.C. // Natural Product Communications. 2013. V. 8(3). P. 415.
  6. Lohar A.V., Wankhade A.M., Faisal M. et al. // European Journal of Biomedical and Pharmaceutical Sciences. 2020. V. 7(7). P. 330.
  7. Hasan M.K., Ara I., Mondal M.S.A., Kabir Y. // Heliyon. 2021. V. 7(6). e07240. https://doi.org/10.1016/j.heliyon.2021.e07240
  8. Su X., Wu L., Hu M. et al. // Biomed. Pharmacother. 2017. V. 95. P. 670. https://doi.org/10.1016/j.biopha.2017.08.123
  9. Graebin C.S. // Sweeteners. 2016. P. 1–17. https://doi.org/10.1007/978-3-319-26478-3_15-1
  10. Sun Z.G., Zhao T.T., Lu N. et al. // Mini. Rev. Med. Chem. 2019. V. 19(10). P. 826. https://doi.org/10.2174/1389557519666190119111125
  11. Hoever G., Baltina L., Michaelis M. et al. // J. Med. Chem. 2005. V. 24. P. 1256.
  12. Cinatl J., Morgenstern B., Bauer G. et al. // Lancet. 2003. V. 361(9374). P. 2045. Doi:https://doi.org/10.1016/s0140-6736(03)13615-x
  13. Chrzanowski J., Chrzanowska A., Graboń W. // Phytotherapy Research. 2021. V. 35(2). P. 629.https://doi.org/10.1002/ptr.6852
  14. Bailly C., Vergoten G. // Pharm. Ther. 2020. V. 214. P. 107618.https://doi.org/10.1016/j.pharmthera.2020.107618
  15. Kang H., Lieberman P.M. // J. Virol. 2011. V. 85(21). P. 11159.
  16. Lin J.C. // Antiviral Res. 2003. V. 59. P. 41.https://doi.org/10.1016/s0166-3542(03)00030-5
  17. Duan E., Wang D., Fang L. et al. // Antiviral Res. 2015. V. 120. P. 122.https://doi.org/10.1016/j.antiviral.2015.06.001
  18. Harada S. // Biochem. J. 2005. V. 392. P. 191.
  19. Sui X., Yin J., Ren X. // Antiviral Res. 2010. V. 85. P. 346.
  20. Wolkerstorfer A., Kurz H., Bachhofner N., Szolar O.H. // Antiviral Res. 2009. V. 83. P. 171.
  21. Konovalova G.G., Tikhaze A.K., Lankin V.Z. // Bull. Exp. Biol. Med. 2000. V. 130. P. 658.
  22. Egashira T., Takayama F., Wada Y. et al. // Yakuri to Chiryo. 1994. V. 22(7). P. 2981.
  23. Ojha S., Javed H., Azimullah S. et al. // Neurotoxicity Research. 2016. V. 29. P. 275. https://doi.org/10.1007/s12640-015-9579-z
  24. Khorsandi L., Orazizadeh M., Mansori E., Fakhredini F. // Bratisl. Lek. Listy. 2015. V. 116(6). P. 383. https://doi.org/10.4149/bll_2015_073
  25. Kiso Y., Tohkin M., Hikino H. et al. // Planta Med. 1984. V. 50(4). P. 298. https://doi.org/10.1055/s-2007-969714
  26. Farmanzadeh D., Tabari L. // J. Indian Chem. Soc. 2017. V. 94(3). P. 261.
  27. Imai K., Takagi Y., Iwazaki A., Nakanishi K. // Free Rad. Antiox. 2014. V. 3(1). P. 40.
  28. Rackova L., Jancinova V., Petrikova M. et al. // Nat. Prod. Res. 2007. V. 21(14). P. 1234.
  29. Takayama F., Egashira T., Yamanaka Y. // Japan. Pharm. Ther. 2000. V. 28(9). P. 763.
  30. Kato T., Horie N., Hashimoto K. et al. // In Vivo. 2008. V. 22(5). P. 583.
  31. Cheel J., Van Antwerpen P., Tumova L. et al. // Food Chem. 2010. V. 122(3). P. 508.
  32. Polyakov N.E., Leshina T.V., Salakhutdinov N.F. et al. // Free Rad. Biol. Med. 2006. V. 40(10). P. 1804.
  33. Gandhi N.M., Maurya D.K., Salvi V. et al. // J. Radiat. Res. 2004. V. 45(3). P. 461. https://doi.org/10.1269/jrr.45.461
  34. Beskina O.A., Abramov A.Y., Gabdulkhanova A.G. et al. // Biomed. Khim. 2006. V. 52(1). P. 60.
  35. Thakur D., Abhilasha, Jain A., Ghoshal G. // J. Sci. Ind. Res. 2016. V. 75(8). P. 487.
  36. Tolstikova T.G., Khvostov M.V., Bryzgalov A.O. // Mini-Rev. Med. Chem. 2009. V. 9. P. 1317.
  37. Apanasenko I.E., Selyutina O.Yu., Polyakov N.E. et al. // Arch. Biochem. Biophys. 2015. V. 572. P. 58.
  38. Polyakov N.E., Khan V.K., Taraban M.B., Leshina T.V. // J. Phys. Chem. B. 2008. V. 112. P. 4435.https://doi.org/10.1021/jp076850j
  39. Polyakov N.E., Magyar A., Kispert L.D. // J. Phys. Chem. B. 2013. V. 117. P. 10173.
  40. Pashkina E., Evseenko V., Dumchenko N. et al. // Nanomaterials. 2022. V. 12. P. 148.https://doi.org/10.3390/nano12010148
  41. Душкин А.В., Метелева Е.С., Толстикова Т.Г., Хвостов М.В. и др. // Химия в интересах устойчивого развития. 2019. Т. 27. С. 233. https://doi.org/10.15372/KhUR2019
  42. Сунцова Л.П., Шлотгауэр А.А., Евсеенко В.И. и др. // Химия в интересах устойчивого развития. 2019. Т. 27. С. 193. https://doi.org/10.15372/KhUR2019125
  43. Focsan A.L., Polyakov N.E., Kispert L.D. // Molecules. 2019. V. 24. P. 3947. https://doi.org/10.3390/molecules24213947
  44. Толстикова Т.Г., Толстиков А.Г., Толстиков Г.А. // Вестн. РАН. 2007. Т. 77. № 10. С. 867. Tolstikova T.G., Tolstikov A.G., Tolstikov G.A. // Herald of the Russian Academy of Sciences. 2007. V. 77(5). P. 447.
  45. Dushkin A.V., Tolstikova T.G., Khvostov M.V., Tolstikov G.A. Complexes of polysaccharides and glycyrrhizic acid with drug molecules. Mechanochemical synthesis and pharmacological activity. In: Karunaratne D.N. (Ed.), The Complex World of Polysaccharides. InTech: Rijeka, Croatia. 2012. P. 573.
  46. Song J., Kim J.Y., You G. et al. // Biotechnology and Bioprocess Engineering. 2022. V. 27(2). P. 163. https://doi.org/10.1007/s12257-021-0198-7
  47. Shen C., Shen B., Zhu J. et al. // Drug Dev. Ind. Pharm. 2021. V. 47(2). P. 207. https://doi.org/10.1080/03639045.2020.1862178
  48. Kondo M., Minamino H., Okuyama G. et al. // J. Soc. Cosmet. Chem. 1986. V. 37. P. 177.
  49. Matsuoka K., Miyajima R., Ishida Y. et al. // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2016. V. 500. P. 112.
  50. Wang Y., Zhao B., Wang S. et al. // Drug Delivery. 2016. V. 23(5). P. 1623. https://doi.org/10.3109/10717544.2015.1135489
  51. Kornievskaya V.S., Kruppa A.I., Polyakov N.E., Leshina T.V. // J. Phys. Chem. B. 2007. V. 111. P. 11447.
  52. Petrova S.S., Schlotgauer A.A., Kruppa A.I., Leshina T.V. // Z. Phys. Chem. 2016. V. 231. P. 1. https://doi.org/10.1515/zpch-2016-0845
  53. Spěváček J. // Curr. Opin. Colloid Interface Sci. 2009. V. 14. P. 184.
  54. Cosa G. // Pure Appl. Chem. 2004. V. 76(2). P. 263.
  55. De Vries H., Beijersbergen van Henegouwen G.M.J. // Photochem. Photobiol. 1995. V. 62. P. 959.
  56. Polyakov N.E., Taraban M.B., Leshina T.V. // Photochem. Photobiol. 2004. V. 80. P. 565.
  57. Schleifer K.-J. // Pharmazie. 1999. V. 54. P. 804.
  58. Selyutina O.Yu., Mastova A.V., Shelepova E.A., Polyakov N.E. // Molecules. 2021. V. 26. P. 1270. https://doi.org/10.3390/molecules26051270
  59. Kim A.V., Shelepova E.A., Evseenko V.I. et al. // J. Mol. Liq. 2021. V. 344. P. 117759.
  60. Turabekova M.A., Rasulev B.F. // Molecules. 2004. V. 9. P. 1194.
  61. Wang F.-P., Chen Q.-H., Liu X.-Y. // Natural Product Reports. 2010. V. 27(4). P. 529. https://doi.org/10.1039/b916679c
  62. Polyakov N.E., Khan V.K., Taraban M.B. et al. // Org. Biomol. Chem. 2005. V. 3. P. 881.
  63. Polyakov N.E., Leshina T.V., Tkachev A.V. et al. // J. Photochem. Photobiol. A: Chem. 2008. V. 197. P. 290.
  64. Polyakov N.E., Simaeva O.A., Taraban M.B. et al. // J. Phys. Chem. B. 2010. V. 114(13). P. 4646.
  65. Ageeva A.A., Khramtsova E.A., Plyusnin V.F. et al. // Photochem. Photobiol. Sci. 2018. V. 17(2). P. 192. https://doi.org/10.1039/c7pp00366h
  66. Polyakov N.E., Leshina T.V. // Russ. Chem. Bull. Int. Ed. 2007. V. 56. P. 631.
  67. Polyakov N.E., Khan V.K., Taraban M.B. et al. // J. Phys. Chem. B. 2005. V. 109(51). P. 24526. Doi:https://doi.org/10.1021/jp053434v
  68. Kornievskaya V.S., Kruppa A.I., Polyakov N.E., Leshina T.V. // J. Phys. Chem. B. 2007. V. 111. P. 11447.
  69. Kornievskaya V.S., Kruppa A.I., Leshina T.V. // J. Incl. Phenom. Macrocycl. Chem. 2008. V. 60. P. 123-130.
  70. Lugović-Mihić L., Duvančić T., Fercek I. et al. // Acta Clin. Croat. 2017. V. 56. P. 277.
  71. Okazaki S., Hirata A., Shogomori Y. et al. // J. Photochem. Photobiol. B. 2021. V. 214. P. 112090. https://doi.org/10.1016/J.JPHOTOBIOL.2020.112090
  72. Babenko S.V., Kuznetsova P.S., Polyakov N.E., Kruppa A.I., Leshina T.V. // J. Photochem. Photobiol. A Chem. 2020. V. 392. P. 112383.
  73. Mastova A.V., Selyutina O.Yu., Evseenko V.I., Polyakov N.E. // Membranes. 2022. V. 12. P. 251.
  74. Selyutina O.Yu., Babenko S.V., Kruppa A.I. et al. // New J. Chem. 2022. V. 46. P. 17865. https://doi.org/10.1039/D2NJ02553A
  75. van de Sand L., Bormann M., Alt M. et al. // Viruses. 2021. V. 13(4). P. 609. https://doi.org/10.3390/v13040609
  76. Yu S., Zhu Y., Xu J. et al. // Phytomedicine. 2020. P. 153364. https://doi.org/10.1016/j.phymed.2020.153364
  77. Kong R., Zhu X., Meteleva E.S. et al. // Int. J. Pharm. 2017. V. 534. P. 108. https://doi.org/10.1016/j.ijpharm.2017.10.011
  78. Glazachev Yu.I., Schlotgauer A.A., Timoshnikov V.A., et al. // J. Memb. Biol. 2020. V. 253(4). https://doi.org/10.1007/s00232-020-00132-3
  79. Kim A.V., Shelepova E., Selyutina O.Yu. et al. // Mol. Pharm. 2019. V. 16. P. 3188.https://doi.org/10.1021/acs.molpharmaceut.9b00390
  80. Selyutina O.Yu., Polyakov N.E., Korneev D.V., Zaitsev B.N. // Russ. Chem. Bull. 2014. V. 63(5). P. 1201. https://doi.org/10.1007/s11172-014-0573-z
  81. Selyutina O.Yu., Apanasenko I.E., Shilov A.G. et al. // Russ. Chem. Bull. 2017. V. 66(1). P. 129. https://doi.org/10.1007/s11172-017-1710-2
  82. Selyutina O.Yu., Apanasenko I.E., Polyakov N.E. // Russ. Chem. Bull. 2015. V. 64 (7). P. 1555. https://doi.org/10.1007/s11172-015-1040-1
  83. Selyutina O.Yu., Apanasenko I.E., Kim A.V. et al. // Colloids and Surfaces. B. Biointerfaces. 2016. V. 147. P. 459. https://doi.org/10.1016/j.colsurfb.2016.08.037
  84. Selyutina O.Yu., Polyakov N.E., Korneev D.V., Zaitsev B.N. // Drug Delivery. 2016. V. 23(3). P. 858. https://doi.org/10.3109/10717544.2014.919544
  85. Sapra B., Jain S., Tiwary A.K. // Drug Delivery. 2008. V. 15. P. 443. https://doi.org/10.1080/10717540802327047
  86. Harikrishnan R., Devi G., van Doan H. et al. // Fish & Shellfish Immunology. 2021. V. 119. P. 193.https://doi.org/10.1016/j.fsi.2021.09.040
  87. Li X.-L., Zhou A.-G., Zhang L., Chen W.-J. // Int. J. Mol. Sci. 2011. V. 12. P. 905.
  88. Takayama F., Egashira T., Yamanaka Y. // Japan. J. Pharm. 1995. V. 67. P. 104.https://doi.org/10.1016/S0021-5198(19)46379-8
  89. Li J.Y., Cao H.Y., Liu P. et al. // Biomed. Res. Int. 2014. P. 872139.
  90. Pastorino G., Cornara L., Soares S. et al. // Phyther. Res. 2018. V. 32. P. 2323.
  91. Obolentseva G.V., Litvinenko V.I., Ammosov A.S. et al. // Pharm. Chem. J. 1999. V. 33. P. 427.
  92. Tripathi M., Singh B.K., Kakkar P. // Food Chem. Toxicol. 2009. V. 47. P. 339.
  93. Lee C.S., Kim Y.J., Lee M.S. et al. // Life Sci. 2008. V. 83. P. 481.
  94. Hasan S.K., Siddiqi A., Nafees S. et al. // Mol. Cell. Biochem. 2016. V. 416. P. 169.
  95. Ageeva A.A., Kruppa A.I., Magin I.M. et al. // Antioxidants. 2022. V. 11. P. 1591.https://doi.org/10.3390/ antiox11081591
  96. Morozova O.B., Ivanov K.L. // Chem. Phys. Chem. 2019. V. 20(2). P. 197.https://doi.org/10.1002/cphc.201800566
  97. Goez M. Elucidating Organic Reaction Mechanisms Using Photo-CIDNP Spectroscopy. In: Kuhn L.T. (Ed.). Hyperpolarization Methods in NMR Spectroscopy. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013. P. 1–32.https://doi.org/10.1007/128_2012_348.
  98. Kuhn L.T., Bargon J. Exploiting Nuclear Spin Polarization to Investigate Free Radical Reactions Via in Situ NMR. In: Bargon J., Kuhn L.T. (Ed.) In situ NMR Methods in Catalysis. Springer Berlin Heidelberg: Berlin, Heidelberg. 2007. P. 125–154.https://doi.org/10.1007/128_2007_119

补充文件

附件文件
动作
1. JATS XML
2.

下载 (44KB)
3.

下载 (33KB)

版权所有 © Н.Э. Поляков, Т.В. Лешина, 2023

##common.cookie##