Physicochemical Approaches to the Study of the Antioxidant Activity of Glycyrrhizin

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The review presents an attempt to collect and systematize the available data on the antioxidant activity of glycyrrhizin obtained by various physicochemical methods and to stimulate further discussions on the mechanisms of its activity and prospects for its use as a multifunctional drug delivery system.

Sobre autores

N. Polyakov

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences; Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences

Email: polyakov@kinetics.nsc.ru
630090, Novosibirsk, Russia; 630128, Novosibirsk, Russia

T. Leshina

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: polyakov@kinetics.nsc.ru
630090, Novosibirsk, Russia

Bibliografia

  1. Толстиков Г.А., Балтина Л.А., Гранкина В.П., Кондратенко P.M. Солодка: биоразнообразие, химия, применение в медицине. Новосибирск: Академическое издательство “Гео”, 2007. 311 с.
  2. Shibata S. // Yakugaku Zasshi - Journal of the Pharmaceutical Society of Japan. 2000. V. 120(10). P. 849. https://doi.org/10.1248/yakushi1947.120.10_849
  3. Selyutina O.Yu., Polyakov N.E. // Int. J. Pharm. 2019. V. 559. P. 271.
  4. Fiore C., Eisenhut M., Ragazzi E. et al. // J. Ethnopharmacol. 2005. V. 99. P. 317.
  5. Ming L.J., Yin A.C. // Natural Product Communications. 2013. V. 8(3). P. 415.
  6. Lohar A.V., Wankhade A.M., Faisal M. et al. // European Journal of Biomedical and Pharmaceutical Sciences. 2020. V. 7(7). P. 330.
  7. Hasan M.K., Ara I., Mondal M.S.A., Kabir Y. // Heliyon. 2021. V. 7(6). e07240. https://doi.org/10.1016/j.heliyon.2021.e07240
  8. Su X., Wu L., Hu M. et al. // Biomed. Pharmacother. 2017. V. 95. P. 670. https://doi.org/10.1016/j.biopha.2017.08.123
  9. Graebin C.S. // Sweeteners. 2016. P. 1–17. https://doi.org/10.1007/978-3-319-26478-3_15-1
  10. Sun Z.G., Zhao T.T., Lu N. et al. // Mini. Rev. Med. Chem. 2019. V. 19(10). P. 826. https://doi.org/10.2174/1389557519666190119111125
  11. Hoever G., Baltina L., Michaelis M. et al. // J. Med. Chem. 2005. V. 24. P. 1256.
  12. Cinatl J., Morgenstern B., Bauer G. et al. // Lancet. 2003. V. 361(9374). P. 2045. Doi:https://doi.org/10.1016/s0140-6736(03)13615-x
  13. Chrzanowski J., Chrzanowska A., Graboń W. // Phytotherapy Research. 2021. V. 35(2). P. 629.https://doi.org/10.1002/ptr.6852
  14. Bailly C., Vergoten G. // Pharm. Ther. 2020. V. 214. P. 107618.https://doi.org/10.1016/j.pharmthera.2020.107618
  15. Kang H., Lieberman P.M. // J. Virol. 2011. V. 85(21). P. 11159.
  16. Lin J.C. // Antiviral Res. 2003. V. 59. P. 41.https://doi.org/10.1016/s0166-3542(03)00030-5
  17. Duan E., Wang D., Fang L. et al. // Antiviral Res. 2015. V. 120. P. 122.https://doi.org/10.1016/j.antiviral.2015.06.001
  18. Harada S. // Biochem. J. 2005. V. 392. P. 191.
  19. Sui X., Yin J., Ren X. // Antiviral Res. 2010. V. 85. P. 346.
  20. Wolkerstorfer A., Kurz H., Bachhofner N., Szolar O.H. // Antiviral Res. 2009. V. 83. P. 171.
  21. Konovalova G.G., Tikhaze A.K., Lankin V.Z. // Bull. Exp. Biol. Med. 2000. V. 130. P. 658.
  22. Egashira T., Takayama F., Wada Y. et al. // Yakuri to Chiryo. 1994. V. 22(7). P. 2981.
  23. Ojha S., Javed H., Azimullah S. et al. // Neurotoxicity Research. 2016. V. 29. P. 275. https://doi.org/10.1007/s12640-015-9579-z
  24. Khorsandi L., Orazizadeh M., Mansori E., Fakhredini F. // Bratisl. Lek. Listy. 2015. V. 116(6). P. 383. https://doi.org/10.4149/bll_2015_073
  25. Kiso Y., Tohkin M., Hikino H. et al. // Planta Med. 1984. V. 50(4). P. 298. https://doi.org/10.1055/s-2007-969714
  26. Farmanzadeh D., Tabari L. // J. Indian Chem. Soc. 2017. V. 94(3). P. 261.
  27. Imai K., Takagi Y., Iwazaki A., Nakanishi K. // Free Rad. Antiox. 2014. V. 3(1). P. 40.
  28. Rackova L., Jancinova V., Petrikova M. et al. // Nat. Prod. Res. 2007. V. 21(14). P. 1234.
  29. Takayama F., Egashira T., Yamanaka Y. // Japan. Pharm. Ther. 2000. V. 28(9). P. 763.
  30. Kato T., Horie N., Hashimoto K. et al. // In Vivo. 2008. V. 22(5). P. 583.
  31. Cheel J., Van Antwerpen P., Tumova L. et al. // Food Chem. 2010. V. 122(3). P. 508.
  32. Polyakov N.E., Leshina T.V., Salakhutdinov N.F. et al. // Free Rad. Biol. Med. 2006. V. 40(10). P. 1804.
  33. Gandhi N.M., Maurya D.K., Salvi V. et al. // J. Radiat. Res. 2004. V. 45(3). P. 461. https://doi.org/10.1269/jrr.45.461
  34. Beskina O.A., Abramov A.Y., Gabdulkhanova A.G. et al. // Biomed. Khim. 2006. V. 52(1). P. 60.
  35. Thakur D., Abhilasha, Jain A., Ghoshal G. // J. Sci. Ind. Res. 2016. V. 75(8). P. 487.
  36. Tolstikova T.G., Khvostov M.V., Bryzgalov A.O. // Mini-Rev. Med. Chem. 2009. V. 9. P. 1317.
  37. Apanasenko I.E., Selyutina O.Yu., Polyakov N.E. et al. // Arch. Biochem. Biophys. 2015. V. 572. P. 58.
  38. Polyakov N.E., Khan V.K., Taraban M.B., Leshina T.V. // J. Phys. Chem. B. 2008. V. 112. P. 4435.https://doi.org/10.1021/jp076850j
  39. Polyakov N.E., Magyar A., Kispert L.D. // J. Phys. Chem. B. 2013. V. 117. P. 10173.
  40. Pashkina E., Evseenko V., Dumchenko N. et al. // Nanomaterials. 2022. V. 12. P. 148.https://doi.org/10.3390/nano12010148
  41. Душкин А.В., Метелева Е.С., Толстикова Т.Г., Хвостов М.В. и др. // Химия в интересах устойчивого развития. 2019. Т. 27. С. 233. https://doi.org/10.15372/KhUR2019
  42. Сунцова Л.П., Шлотгауэр А.А., Евсеенко В.И. и др. // Химия в интересах устойчивого развития. 2019. Т. 27. С. 193. https://doi.org/10.15372/KhUR2019125
  43. Focsan A.L., Polyakov N.E., Kispert L.D. // Molecules. 2019. V. 24. P. 3947. https://doi.org/10.3390/molecules24213947
  44. Толстикова Т.Г., Толстиков А.Г., Толстиков Г.А. // Вестн. РАН. 2007. Т. 77. № 10. С. 867. Tolstikova T.G., Tolstikov A.G., Tolstikov G.A. // Herald of the Russian Academy of Sciences. 2007. V. 77(5). P. 447.
  45. Dushkin A.V., Tolstikova T.G., Khvostov M.V., Tolstikov G.A. Complexes of polysaccharides and glycyrrhizic acid with drug molecules. Mechanochemical synthesis and pharmacological activity. In: Karunaratne D.N. (Ed.), The Complex World of Polysaccharides. InTech: Rijeka, Croatia. 2012. P. 573.
  46. Song J., Kim J.Y., You G. et al. // Biotechnology and Bioprocess Engineering. 2022. V. 27(2). P. 163. https://doi.org/10.1007/s12257-021-0198-7
  47. Shen C., Shen B., Zhu J. et al. // Drug Dev. Ind. Pharm. 2021. V. 47(2). P. 207. https://doi.org/10.1080/03639045.2020.1862178
  48. Kondo M., Minamino H., Okuyama G. et al. // J. Soc. Cosmet. Chem. 1986. V. 37. P. 177.
  49. Matsuoka K., Miyajima R., Ishida Y. et al. // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2016. V. 500. P. 112.
  50. Wang Y., Zhao B., Wang S. et al. // Drug Delivery. 2016. V. 23(5). P. 1623. https://doi.org/10.3109/10717544.2015.1135489
  51. Kornievskaya V.S., Kruppa A.I., Polyakov N.E., Leshina T.V. // J. Phys. Chem. B. 2007. V. 111. P. 11447.
  52. Petrova S.S., Schlotgauer A.A., Kruppa A.I., Leshina T.V. // Z. Phys. Chem. 2016. V. 231. P. 1. https://doi.org/10.1515/zpch-2016-0845
  53. Spěváček J. // Curr. Opin. Colloid Interface Sci. 2009. V. 14. P. 184.
  54. Cosa G. // Pure Appl. Chem. 2004. V. 76(2). P. 263.
  55. De Vries H., Beijersbergen van Henegouwen G.M.J. // Photochem. Photobiol. 1995. V. 62. P. 959.
  56. Polyakov N.E., Taraban M.B., Leshina T.V. // Photochem. Photobiol. 2004. V. 80. P. 565.
  57. Schleifer K.-J. // Pharmazie. 1999. V. 54. P. 804.
  58. Selyutina O.Yu., Mastova A.V., Shelepova E.A., Polyakov N.E. // Molecules. 2021. V. 26. P. 1270. https://doi.org/10.3390/molecules26051270
  59. Kim A.V., Shelepova E.A., Evseenko V.I. et al. // J. Mol. Liq. 2021. V. 344. P. 117759.
  60. Turabekova M.A., Rasulev B.F. // Molecules. 2004. V. 9. P. 1194.
  61. Wang F.-P., Chen Q.-H., Liu X.-Y. // Natural Product Reports. 2010. V. 27(4). P. 529. https://doi.org/10.1039/b916679c
  62. Polyakov N.E., Khan V.K., Taraban M.B. et al. // Org. Biomol. Chem. 2005. V. 3. P. 881.
  63. Polyakov N.E., Leshina T.V., Tkachev A.V. et al. // J. Photochem. Photobiol. A: Chem. 2008. V. 197. P. 290.
  64. Polyakov N.E., Simaeva O.A., Taraban M.B. et al. // J. Phys. Chem. B. 2010. V. 114(13). P. 4646.
  65. Ageeva A.A., Khramtsova E.A., Plyusnin V.F. et al. // Photochem. Photobiol. Sci. 2018. V. 17(2). P. 192. https://doi.org/10.1039/c7pp00366h
  66. Polyakov N.E., Leshina T.V. // Russ. Chem. Bull. Int. Ed. 2007. V. 56. P. 631.
  67. Polyakov N.E., Khan V.K., Taraban M.B. et al. // J. Phys. Chem. B. 2005. V. 109(51). P. 24526. Doi:https://doi.org/10.1021/jp053434v
  68. Kornievskaya V.S., Kruppa A.I., Polyakov N.E., Leshina T.V. // J. Phys. Chem. B. 2007. V. 111. P. 11447.
  69. Kornievskaya V.S., Kruppa A.I., Leshina T.V. // J. Incl. Phenom. Macrocycl. Chem. 2008. V. 60. P. 123-130.
  70. Lugović-Mihić L., Duvančić T., Fercek I. et al. // Acta Clin. Croat. 2017. V. 56. P. 277.
  71. Okazaki S., Hirata A., Shogomori Y. et al. // J. Photochem. Photobiol. B. 2021. V. 214. P. 112090. https://doi.org/10.1016/J.JPHOTOBIOL.2020.112090
  72. Babenko S.V., Kuznetsova P.S., Polyakov N.E., Kruppa A.I., Leshina T.V. // J. Photochem. Photobiol. A Chem. 2020. V. 392. P. 112383.
  73. Mastova A.V., Selyutina O.Yu., Evseenko V.I., Polyakov N.E. // Membranes. 2022. V. 12. P. 251.
  74. Selyutina O.Yu., Babenko S.V., Kruppa A.I. et al. // New J. Chem. 2022. V. 46. P. 17865. https://doi.org/10.1039/D2NJ02553A
  75. van de Sand L., Bormann M., Alt M. et al. // Viruses. 2021. V. 13(4). P. 609. https://doi.org/10.3390/v13040609
  76. Yu S., Zhu Y., Xu J. et al. // Phytomedicine. 2020. P. 153364. https://doi.org/10.1016/j.phymed.2020.153364
  77. Kong R., Zhu X., Meteleva E.S. et al. // Int. J. Pharm. 2017. V. 534. P. 108. https://doi.org/10.1016/j.ijpharm.2017.10.011
  78. Glazachev Yu.I., Schlotgauer A.A., Timoshnikov V.A., et al. // J. Memb. Biol. 2020. V. 253(4). https://doi.org/10.1007/s00232-020-00132-3
  79. Kim A.V., Shelepova E., Selyutina O.Yu. et al. // Mol. Pharm. 2019. V. 16. P. 3188.https://doi.org/10.1021/acs.molpharmaceut.9b00390
  80. Selyutina O.Yu., Polyakov N.E., Korneev D.V., Zaitsev B.N. // Russ. Chem. Bull. 2014. V. 63(5). P. 1201. https://doi.org/10.1007/s11172-014-0573-z
  81. Selyutina O.Yu., Apanasenko I.E., Shilov A.G. et al. // Russ. Chem. Bull. 2017. V. 66(1). P. 129. https://doi.org/10.1007/s11172-017-1710-2
  82. Selyutina O.Yu., Apanasenko I.E., Polyakov N.E. // Russ. Chem. Bull. 2015. V. 64 (7). P. 1555. https://doi.org/10.1007/s11172-015-1040-1
  83. Selyutina O.Yu., Apanasenko I.E., Kim A.V. et al. // Colloids and Surfaces. B. Biointerfaces. 2016. V. 147. P. 459. https://doi.org/10.1016/j.colsurfb.2016.08.037
  84. Selyutina O.Yu., Polyakov N.E., Korneev D.V., Zaitsev B.N. // Drug Delivery. 2016. V. 23(3). P. 858. https://doi.org/10.3109/10717544.2014.919544
  85. Sapra B., Jain S., Tiwary A.K. // Drug Delivery. 2008. V. 15. P. 443. https://doi.org/10.1080/10717540802327047
  86. Harikrishnan R., Devi G., van Doan H. et al. // Fish & Shellfish Immunology. 2021. V. 119. P. 193.https://doi.org/10.1016/j.fsi.2021.09.040
  87. Li X.-L., Zhou A.-G., Zhang L., Chen W.-J. // Int. J. Mol. Sci. 2011. V. 12. P. 905.
  88. Takayama F., Egashira T., Yamanaka Y. // Japan. J. Pharm. 1995. V. 67. P. 104.https://doi.org/10.1016/S0021-5198(19)46379-8
  89. Li J.Y., Cao H.Y., Liu P. et al. // Biomed. Res. Int. 2014. P. 872139.
  90. Pastorino G., Cornara L., Soares S. et al. // Phyther. Res. 2018. V. 32. P. 2323.
  91. Obolentseva G.V., Litvinenko V.I., Ammosov A.S. et al. // Pharm. Chem. J. 1999. V. 33. P. 427.
  92. Tripathi M., Singh B.K., Kakkar P. // Food Chem. Toxicol. 2009. V. 47. P. 339.
  93. Lee C.S., Kim Y.J., Lee M.S. et al. // Life Sci. 2008. V. 83. P. 481.
  94. Hasan S.K., Siddiqi A., Nafees S. et al. // Mol. Cell. Biochem. 2016. V. 416. P. 169.
  95. Ageeva A.A., Kruppa A.I., Magin I.M. et al. // Antioxidants. 2022. V. 11. P. 1591.https://doi.org/10.3390/ antiox11081591
  96. Morozova O.B., Ivanov K.L. // Chem. Phys. Chem. 2019. V. 20(2). P. 197.https://doi.org/10.1002/cphc.201800566
  97. Goez M. Elucidating Organic Reaction Mechanisms Using Photo-CIDNP Spectroscopy. In: Kuhn L.T. (Ed.). Hyperpolarization Methods in NMR Spectroscopy. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013. P. 1–32.https://doi.org/10.1007/128_2012_348.
  98. Kuhn L.T., Bargon J. Exploiting Nuclear Spin Polarization to Investigate Free Radical Reactions Via in Situ NMR. In: Bargon J., Kuhn L.T. (Ed.) In situ NMR Methods in Catalysis. Springer Berlin Heidelberg: Berlin, Heidelberg. 2007. P. 125–154.https://doi.org/10.1007/128_2007_119

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (44KB)
3.

Baixar (33KB)

Declaração de direitos autorais © Н.Э. Поляков, Т.В. Лешина, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».