Activation of Viscous Flows of Water–Acetone–Methyl Ethyl Ketone Solutions with High Contents of Water, Compared to Water–Alcohol–Acetone Solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Values of kinematic viscosity and density are determined for water–acetone–methyl ethyl ketone solutions for the first time in the region of high contents of water and the 20–40°C range of temperatures. Results are used to calculate the molar kinematic viscosity (νm), the Gibbs energy of viscous flow activation (ΔG≠νΔ), and the entropy of viscous flow activation. The viscometric characteristics of this system are compared to those of water–ethanol–acetone, water–2-propanol–acetone, and water–2-butanol–acetone systems studied earlier. Dependences on the concentration of one organic component at a fixed content of a second are presented for different properties. The viscometric parameters of ternary solutions with methyl ethyl ketone, calculated based on size/molecular weight of the components (νm and ΔG≠νΔ), are close to those obtained for solutions with ethanol but notably higher for solutions with 2-propanol and 2-butanol. It is concluded that molecules participating in the formation of intermolecular hydrogen bonds as proton donors (alcohols) raises viscosity more than an increase in size/mass (methyl ethyl ketone). Different ways of calculating the entropy of viscous flow activation (ΔS≠νΔ) are compared on the basis of literature data. It is found that ΔS≠νΔ is higher than that of water in the studied range of concentrations of the ternary water–acetone–methyl ethyl ketone system, which is also typical of other aqueous solutions.

Sobre autores

O. Grineva

Chemistry Department, M.V. Lomonosov Moscow State University

Autor responsável pela correspondência
Email: ovg@phys.chem.msu.ru
119991, Moscow, Russia

Bibliografia

  1. Viswanath D.S., Ghosh T.K., Prasad D.H.L. et al. Viscosity of Liquids. Theory, Estimation, Experiment, and Data. Springer, 2007. XIV, 662 p. https://doi.org/10.1007/978-1-4020-5482-2
  2. Baas J., Schotten M., Plume A. et al. // Quant. Sci. Stud. 2020. V. 1. № 1. P. 377. https://doi.org/10.1162/qss_a_00019
  3. Kincaid J.F., Eyring H., Stearn A.E. // Chem. Rev. 1941. V. 28. № 2. P. 301. https://doi.org/10.1021/cr60090a005
  4. Глесстон С., Лейдер К., Эйринг Г. Теория абсолютных скоростей реакций. М.: Изд-во иностр. лит., 1948. 583 с.
  5. Гринева О.В., Кораблева Е.Ю. // Журн. физ. химии. 1998. Т. 72. № 4. С. 657. (Grineva O.V., Korableva E.Yu. // Russ. J. Phys. Chem. A. 1998. V. 72. № 4. P. 567.)
  6. Дакар Г.М. // Журн. физ. химии. 2001. Т. 75. № 4. С. 656. (Dakar G.M. // Russ. J. Phys. Chem. A. 2001. V. 75. № 4. P. 576.)
  7. Дакар Г.М., Гринева О.В. // Там же. 2002. Т. 76. № 5. С. 862. (Dakar G.M., Grineva O.V. // Russ. J. Phys. Chem. A. 2002. V. 76. № 5. P. 761.)
  8. Дакар Г.М., Гринева О.В. // Там же. 2002. Т. 76. № 11. С. 1945. (Dakar G.M., Grineva O.V. // Russ. J. Phys. Chem. A. 2002. V. 76. № 11. P. 1764.)
  9. Гринева О.В., Абрамович А.И. // Там же. 2004. Т. 78. № 7. С. 1181. (Grineva O.V., Abramovich A.I. // Russ. J. Phys. Chem. A. 2004. V. 78. № 7. P. 1024.)
  10. CRC Handbook of Chemistry and Physics 90th Edition / Ed. by D.R. Lide. Boca Raton, FL: CRC Press, Taylor and Francis, 2010.
  11. Othmer D.F., Chudgar M.M., Sherman Levy S.L. // Ind. Eng. Chem. 1952. V. 44. № 8. P. 1872.
  12. Faranda S., Foca G., Marchetti A. et al. // J. Solut. Chem. 2004. V. 33. № 10. P. 1181. https://doi.org/10.1007/s10953-004-7135-1
  13. Mączyński A., Shaw D.G., Góral M., Wiśniewska-Gocłowska B. // J. Phys. Chem. Ref. Data. 2008. V. 37. № 3. P. 1517.
  14. Ma D., Zhu C., Fu T. et al. // J. Chem. Thermodyn. 2019. V. 138. P. 350. https://doi.org/10.1016/j.jct.2019.06.032
  15. Основы физической химии. Теория и задачи: учеб. пособие для вузов / В.В. Еремин, С.И. Каргов, И.А. Успенская, Н.Е. Кузьменко, В.В. Лунин. М.: Изд-во “Экзамен”, 2005. 480 с.
  16. Афанасьев В.Н., Крестов Г.А. // Докл. АН СССР. 1983. Т. 269. № 3. С. 620.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (77KB)
3.

Baixar (88KB)
4.

Baixar (44KB)
5.

Baixar (51KB)
6.

Baixar (41KB)
7.

Baixar (46KB)
8.

Baixar (51KB)
9.

Baixar (47KB)
10.

Baixar (39KB)

Declaração de direitos autorais © О.В. Гринева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies