From Hydrophylicity to Surface Hydrophobicity: Variation of the Wettability of a Material on a Substrate Due to Local Vibrational Effects during Its Interface Synthesis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A system of an aqueous solution of a lanthanide salt di-(2-ethylhexyl)phosphoric acid in a diluent (heptane, toluene, carbon tetrachloride) is used to show that the local vibration on the interfacial layer in a system of two immiscible liquids during interfacial synthesis can produce a qualitative change in the wettability of the substrate onto which the material of interfacial formations is transferred. This makes the surface hydrophobic or hydrophilic due to different structuring, as in the lotus leaf effect. By varying the composition of the system, the conditions of the process, and the parameters of the external force field, a material with a given angle of contact (30° to 163°) can be obtained, improving the consumer qualities of its carrier.

作者简介

E. Golubina

Novomoskovsk Institute, Mendeleev University of Chemical Technology

Email: Elena-Golubina@mail.ru
301650, Novomoskovsk, Russia

N. Kizim

Novomoskovsk Institute, Mendeleev University of Chemical Technology

编辑信件的主要联系方式.
Email: Elena-Golubina@mail.ru
301650, Novomoskovsk, Russia

参考

  1. Lyubimov D.V., Lyubimova T.P., Tcherepanov A.A. et al. // Microgravity Science and Technology. 2005. V. 16. № 1. P. 290. https://doi.org/10.1007/BF029459932005
  2. Ouriev B. // Rheologica Acta. 2007. V. 46. № 6. P. 785. https://doi.org/10.1007/s00397-006-0152-9
  3. Ubbenjans B., Frank-Rotsch Ch., Virbulis J. et al. // Crystal Research and Technology. 2012. V. 47. № 3. P. 279. https://doi.org/10.1002_crat.201100413
  4. Chirita G., Stefanescu I., Soares D., Silva F.S. // Materials & Design. 2009. V. 30. № 5. P. 1575. https://doi.org/10.1016/j.matdes.2008.07.045
  5. Premvrat Kumar, Sandeep Katiyar // Intern. J. of Engineering Research and Technology. 2018. V. 7. № 6. P. 370.
  6. Patel V.P., Patel J.V., Patel A.V., Bhuva B.V. // Intern. Research J. of Engineering and Technology. 2019. V. 6. № 12. P. 1047.
  7. Wen Lai Huang, Kai Ming Liang, Shi Hua Cui, Shou Ren Gu // Materials Research Bulletin. 2001. V. 36. № 3–4. P. 461. https://doi.org/10.1016/S0025-5408(01)00524-4
  8. Alvarez A., Friend J., Yeo L.Y. // Langmuir. 2008. V. 24. P. 10629. https://doi.org/10.1021/la802255b
  9. Руденко О.В., Коробов А.И., Коршак Б.А. и др.// Российские нанотехнологии. 2010. Т. 5. № 7–8. С. 63. Rudenko O.V., Korobov A.I., Korshak B.A. et al. // Nanotechnologies in Russia. 2010. V. 5. № 7–8. P. 469. https://doi.org/10.1134/S1995078010070062
  10. Голубина Е.Н., Кизим Н.Ф. // Журн. физ. химии. 2021. Т. 95. № 4. С. 508. Golubina E.N., Kizim N.F. // Rus. J. of Phys. Chem. A. 2021. V. 95. № 4. Р. 659. https://doi.org/10.1134/S003602442104007510.1134/S0036024421040075.https://doi.org/10.31857/S0044453721040075
  11. Duan H., Wang D., Kurth D.G., Mohwald H. // Angewandte Chemie International Edition. 2004. V. 43. P. 5639. https://doi.org/10.1002/anie.200460920
  12. Mao Z., Guo J., Bai S. et al. // Angewandte Chemie International Edition. 2009. V. 48. № 27. P. 4953. https://doi.org/10.1002/anie.200901486
  13. Lin Y., Skaff H., Emrick T. et al. // Science. 2003. V. 299. P. 226. https://doi.org/10.1126/science.1078616
  14. McDowell W.J., Perdue P.T., Case G.N. // J. Inorg. and Nucl. Chem. 1976. V. 38. P. 2127.
  15. Кизим Н.Ф., Голубина Е.Н. // Журн. физ. химии. 2018. Т. 92. № 3. С. 457. Kizim N.F., Golubina E.N. // Rus. J. of Phys. Chem. A. 2018. V. 92. № 3. Р. 565. https://doi.org/10.1134/S003602441803010X
  16. Голубина Е.Н., Кизим Н.Ф., Чекмарев А.М. // Докл. АН. 2015. Т. 465. № 3. С. 320. Golubina E.N., Kizim N.F., Chekmarev A.M. // Doklady Physical Chemistry. 2015. V. 465. Part 1. Р. 283. https://doi.org/10.1134/S001250161511007X
  17. Голубина Е.Н., Кизим Н.Ф., Чекмарев А.М. // Журн. физ. химии. 2014. Т. 88. № 9. С. 1429. Kizim N.F., Golubina E.N., Chekmarev A.M. // Rus. J. of Phys. Chem. A. 2014. V. 88. № 9. Р. 1594. https://doi.org/10.1134/S0036024414090155
  18. Кизим Н.Ф., Голубина Е.Н. // Хим. технология. 2009. Т. 10. № 5. С. 296.
  19. Kizim N.F., Golubina E.N., Tarasov V.V. // Theoretical Foundations of Chemical Engineering. 2016. V. 50. № 4. P. 632. https://doi.org/10.1134/S0040579516040126
  20. Golubina E.N., Kizim N.F., Sinyugina E.V., Chernyshev I.N. // Mendeleev Commun. 2018. V. 28. № 1. P. 110. https://doi.org/10.1016/j.mencom.2018.01.038
  21. Чернышев И.Н., Сафронова Е.В., Голубина Е.Н., Кизим Н.Ф. // Успехи в химии и хим. технологии. 2017. Т. 31. № 13. С. 11.
  22. Голубина Е.Н., Кизим Н.Ф., Чекмарев А.М. // Докл. АН. 2019. Т. 488. № 3. Р. 738. Golubina E.N., Kizim N.F., Chekmarev A.M. // Doklady Physical Chemistry. 2019. V. 488. Part 1. Р. 134. https://doi.org/10.1134/S0012501619090069
  23. Голубина Е.Н., Кизим Н.Ф. // Хим. технология. 2010. Т. 11. № 7. С. 424.
  24. Cassie A.B.D., Baxter S. // Trans. Faraday Soc. 1944. V. 40. P. 546.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (266KB)
3.

下载 (151KB)
4.

下载 (34KB)
5.

下载 (23KB)
6.

下载 (39KB)

版权所有 © Е.Н. Голубина, Н.Ф. Кизим, 2023

##common.cookie##