Structure and Properties of Composite Materials Sintered at High Pressure and Reinforced with Amorphous Boron Particles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Metal matrix composite materials (CMs) reinforced with boron particles are synthesized from powders of amorphous boron and metal (Ni, Ti) at a pressure of 8 GPa and temperatures of 500–1000°C. It is established that amorphous boron crystallizes during synthesis at temperatures above 800°С. Amorphous boron particles are characterized by a hardness of ~30 GPa, an indentation modulus of elasticity of up to 270 GPa, and an elastic recovery of more than 60%. The patterns of boride formation during high-pressure synthesis are studied. It is shown that the wear resistance of a Ni–B CM synthesized at 600°С grows by more than 30 times, relative to the wear resistance of pure nickel. Reinforcing titanium with 30% amorphous boron increases wear resistance by more than two orders of magnitude, but the coefficient of friction of CMs is reduced slightly.

Sobre autores

I. Lukina

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: tchern@imet.ac.ru
119334, Moscow, Russia

O. Chernogorova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: tchern@imet.ac.ru
119334, Moscow, Russia

E. Drozdova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: tchern@imet.ac.ru
119334, Moscow, Russia

E. Ekimov

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: tchern@imet.ac.ru
142190, Moscow, Russia

Bibliografia

  1. Shah F.U., Glavatskih S., Antzutkin O.N. // Tribol. Lett. 2013. V. 51. № 3. P. 281. https://doi.org/10.1007/s11249-013-0181-3
  2. German R.M., Mar R.W., Hastings J.C. // Ceram. Bull. 1975. V. 54. № 2. P. 178.
  3. Kalanadze G.I., Shalamberidze S.O., Peikrishvili A.B. // J. Solid State Chem. 2000. V. 154. P. 194. https://doi.org/10.1006/jssc.2000.8835
  4. Brodhag C., Thevenot F. // J. Less-Common Met. 1986. V. 117. P. 175. https://doi.org/10.1006/jssc.2000.8835
  5. Екимов Е.А., Садыков Р.А., Громницкая Е.Л. и др. // Неорган. матер. 2006. Т. 42. № 5. С. 538.
  6. Ekimov E.A., Sidorov V.A., Sadykov R.A. et al. // High Pressure Res. 2007. V. 27. P. 179. https://doi.org/10.1080/08957950601101902
  7. Chernogorova O., Drozdova E., Ovchinnikova I. et al. // J. Appl. Phys. 2012. V. 111. P. 112601. https://doi.org/10.1063/1.4726155
  8. Черногорова О.П., Дроздова Е.И., Блинов В.М., Бульенков Н.А. // Росс. нанотехнол. 2008. № 5–6. С. 150.
  9. Talley C.P. // J. Appl. Phys. 1959. V. 30. № 7. P. 1114.
  10. Bhardwaj J., Krawitz A. // J. Mater. Sci. 1983. V. 18. P. 2639.
  11. Диаграммы состояния двойных металлических систем: справочник в 3-х т. / Под ред. Н.П. Лякишева. М.: Машиностроение, 1996.
  12. Leyland A., Matthews A. // Surf. Coat. Technol. 2004. V. 177–178. P. 317. https://doi.org/10.1016/j.surfcoat.2003.09.011

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (91KB)
3.

Baixar (224KB)
4.

Baixar (2MB)
5.

Baixar (31KB)

Declaração de direitos autorais © И.Н. Лукина, О.П. Черногорова, Е.И. Дроздова, Е.А. Екимов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies