МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СЕКРЕЦИИ МЕДИАТОРА В НЕРВНО-МЫШЕЧНЫХ СИНАПСАХ СОМАТИЧЕСКОЙ МУСКУЛАТУРЫ ДОЖДЕВОГО ЧЕРВЯ LUMBRICUS TERRESTRIS

Обложка
  • Авторы: Нуруллин Л.Ф.1,2, Волков Е.М.2
  • Учреждения:
    1. Казанский институт биохимии и биофизики – структурное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Казанский научный центр Российской академии наук”
    2. Казанский государственный медицинский университет
  • Выпуск: Том 61, № 3 (2025)
  • Страницы: 191-201
  • Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
  • URL: https://journals.rcsi.science/0044-4529/article/view/348810
  • DOI: https://doi.org/10.7868/S3034552925030044
  • ID: 348810

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В соматической мышце дождевого червяLumbricusterrestrisв зоне двигательных нервно-мышечных синапсов методами флуоресцентной микроскопии выявлено присутствие ферментов ацетилхолинэстеразы (АХЭ) и везикулярного АХ-транспортера (ВАХТ), а также α1, α2 и β1 субъединиц ионотропного никотинового АХ-рецепторно-канального комплекса (нАХР). В мышечном гомогенате показано присутствие медиатора ацетилхолина (АХ). Таким образом, в эволюционно-первичной соматической мускулатуре аннелид существует полностью сформированная холинергическая двигательная иннервация, аналогичная той, которая имеется у представителей более высокоорганизованных классов позвоночных животных, включая млекопитающих.

Об авторах

Л. Ф. Нуруллин

Казанский институт биохимии и биофизики – структурное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Казанский научный центр Российской академии наук”; Казанский государственный медицинский университет

Автор, ответственный за переписку.
Email: lenizn@yandex.ru
Казань, Россия; Казань, Россия

Е. М. Волков

Казанский государственный медицинский университет

Email: euroworm@mail.ru
Казань, Россия

Список литературы

  1. Tansey EM (2006) Henry Dale and the discovery of acetylcholine. Comptes Rendus Biologies 329: 419–425. https://doi.org/10.1016/j.crvi.2006.03.012
  2. Brown DA (2019) Acetylcholine and cholinergic receptors. Brain Neurosci Adv 3: 2398212818820506. https://doi.org/10.1177/2398212818820506
  3. Zhang Y, Dai F, Chen N, Zhou D, Lee CH, Song C, Zhang Y, Zhang Z (2024) Structural insights into VAChT neurotransmitter recognition and inhibition. Cell Res 34: 665–668. https://doi.org/10.1038/s41422-024-00986-5
  4. Sinclair P, Kabbani N (2023) Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 197: 106975. https://doi.org/10.1016/j.phrs.2023.106975
  5. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274: 3799–3845. https://doi.org/10.1111/j.1742-4658.2007.05935.x
  6. Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels. BMC Neurosci 13: 73. https://doi.org/10.1186/1471-2202-13-73
  7. Rosenthal JS, Yuan Q (2021) Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 15: 720560. https://doi.org/10.3389/fncel.2021.720560
  8. Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert Neurosci 7: 129–131. https://doi.org/10.1007/s10158-007-0049-z
  9. Cohen E, Chatzigeorgiou M, Husson SJ, Steuer-Costa W, Gottschalk A, Schafer WR, Treinin M (2014) Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception. Mol Cell Neurosci 59: 85–96. https://doi.org/10.1016/j.mcn.2014.02.001
  10. Albeg A, Smith CJ, Chatzigeorgiou M, Feitelson DG, Hall DH, Schafer WR, Miller DM 3rd, Treinin M (2011) C. elegans multi-dendritic sensory neurons: morphology and function. Mol Cell Neurosci 46: 308–317. https://doi.org/10.1016/j.mcn.2010.10.001
  11. Barbagallo B, Prescott HA, Boyle P, Climer J, Francis MM (2010) A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans. J Neurosci 30: 13932–13942. https://doi.org/10.1523/jneurosci.1515-10.2010
  12. Gottschalk A, Almedom RB, Schedletzky T, Anderson SD, Yates JR 3rd, Schafer WR (2005) Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J 24: 2566–2578. https://doi.org/10.1038/sj.emboj.7600741
  13. Ahmed NY, Knowles R, Dehorter N (2019) New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 12: 204. https://doi.org/10.3389/fnmol.2019.00204
  14. He G, Li Y, Deng H, Zuo H (2023) Advances in the study of cholinergic circuits in the central nervous system. Ann Clin Transl Neurol 10: 2179–2191.
  15. https://doi.org/10.1002/acn3.51920
  16. Legay C (2018) Congenital myasthenic syndromes with acetylcholinesterase deficiency, the pathophysiological mechanisms. Ann N Y Acad Sci 1413: 104–110. https://doi.org/10.1111/nyas.13595
  17. Treinin M, Jin Y (2021) Cholinergic transmission in C. elegans: Functions, diversity, and maturation of ACh-activated ion channels. J Neurochem. 158: 1274–1291. https://doi.org/10.1111/jnc.15164
  18. Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg H, Colomb J, Weber C, Ramesh N, Duch C, Biserova NM, Sigrist S, Pfluger HJ (2018) Structural and Molecular Properties of Insect Type II Motor Axon Terminals.
  19. Front Syst Neurosci 12: 5. https://doi.org/10.3389/fnsys.2018.00005
  20. Walker RJ, Holden-Dye L, Franks CJ (1993) Physiological and pharmacological studies on annelid and nematode body wall muscle. Comp Biochem Physiol C Comp Pharmacol Toxicol 106: 49–58.
  21. https://doi.org/10.1016/0742-8413(93)90253-h
  22. Volkov EM, Nurullin LF, Volkov ME, Nikolsky EE, Vyskočil F (2011) Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles. Comp Biochem Physiol A Mol Integr Physiol 158: 520–524. https://doi.org/10.1016/j.cbpa.2010.12.016
  23. Volkov EM, Nurullin LF, Nikolsky E, Vyskocil F (2007) Miniature excitatory synaptic ion currents in the earthworm Lumbricus terrestris body wall muscles. Physiol Res 56: 655–658. https://doi.org/10.33549/physiolres.931269
  24. Nurullin LF, Volkov EM (2024) Immunofluorescent Identification of Dystrophin, Actin, and Light and Heavy Myosin Chains in Somatic Cells of Earthworm Lumbricus terrestris. Cell Tiss Biol 18: 341–346. https://doi.org/10.1134/S1990519X24700287
  25. Nurullin LF, Volkov EM (2024) The Presence of Septin Proteins in the Neuromuscular Junction of Somatic Muscle in the Earthworm Lumbricus terrestris. Biophysics 69: 876–881. https://doi.org/10.1134/S0006350924700969
  26. Drewes CD, Pax RA (1974) Neuromuscular physiology of the longitudinal muscle of the earthworm, Lumbricus terrestris. Effects of different physiological salines. J Exp Biol 60: 445–52. https://doi.org/10.1242/jeb.60.2.445
  27. Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F (1983) Fasciculin, a powerful anticholinesterase polypeptide from Dendroaspis angusticeps venom. Neurochem Int 5: 267–274. https://doi.org/10.1016/0197-0186(83)90028-1
  28. Le Du MH, Marchot P, Bougis PE, Fontecilla-Camps JC (1992) 1.9-A resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom. J Biol Chem 267: 22122–22130. https://doi.org/10.2210/pdb1fas/pdb
  29. Duran R, Cervenansky C, Dajas F, Tipton KF (1994) Fasciculin inhibition of acetylcholinesterase is prevented by chemical modification of the enzyme at a peripheral site. Biochim Biophys Acta 1201: 381–388. https://doi.org/10.1016/0304-4165(94)90066-3
  30. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274: 3799–3845. https://doi.org/10.1111/j.1742-4658.2007.05935.x
  31. Ho TNT, Abraham N, Lewis RJ (2020) Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 14: 609005. https://doi.org/10.3389/fnins.2020.609005 Sloan MA, Reaves BJ, Maclean MJ, Storey BE, Wolstenholme AJ (2015) Expression of nicotinic acetylcholine receptor subunits from parasitic nematodes in Caenorhabditis elegans. Mol Biochem Parasitol 204: 44–50. https://doi.org/10.1016/j.molbiopara.2015.12.006
  32. Holden-Dye L, Joyner M, O'Connor V, Walker RJ (2013) Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes. Parasitol Int 62: 606–615. https://doi.org/10.1016/j.parint.2013.03.004
  33. Sellings L, Pereira S, Qian C, Dixon-McDougall T, Nowak C, Zhao B, Tyndale RF, van der Kooy D (2013) Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15. Eur J Neurosci 37: 743–756. https://doi.org/10.1111/ejn.12099
  34. Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels. BMC Neurosci 13: 73. https://doi.org/10.1186/1471-2202-13-73
  35. Elwary SM, Chavan B, Schallreuter KU (2006) The vesicular acetylcholine transporter is present in melanocytes and keratinocytes in the human epidermis. J Invest Dermatol 126: 1879–1884. https://doi.org/10.1038/sj.jid.5700268
  36. Banzai K, Adachi T, Izumi S (2015) Comparative analyses of the cholinergic locus of ChAT and VAChT and its expression in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 185: 1–9. https://doi.org/10.1016/j.cbpb.2015.03.001
  37. Schafer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD (1994) Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J Mol Neurosci 5: 1–26. https://doi.org/10.1007/bf02736691
  38. Maeda M, Ohba N, Nakagomi S, Suzuki Y, Kiryu-Seo S, Namikawa K, Kondoh W, Tanaka A, Kiyama H (2004) Vesicular acetylcholine transporter can be a morphological marker for the reinnervation to muscle of regenerating motor axons. Neurosci Res 48: 305–314. https://doi.org/10.1016/j.neures.2003.11.008
  39. Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB (1993) The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261: 617–619. https://doi.org/10.1126/science.8342028
  40. Schwarz J, Bringmann H (2017) Analysis of the NK2 homeobox gene ceh-24 reveals sublateral motor neuron control of left-right turning during sleep. Elife 6: e24846. https://doi.org/10.7554/elife.24846
  41. Mathews EA, Mullen GP, Hodgkin J, Duerr JS, Rand JB (2012) Genetic interactions between UNC-17/VAChT and a novel transmembrane protein in Caenorhabditis elegans. Genetics 192: 1315–1325. https://doi.org/10.1534/genetics.112.145771
  42. Pezzementi L, Chatonnet A (2010) Evolution of cholinesterases in the animal kingdom. Chem Biol Interact 187: 27–33. https://doi.org/10.1016/j.cbi.2010.03.043
  43. De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ (2021) A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 11: 580. https://doi.org/10.3390/biom11040580
  44. Huchard E, Martinez M, Alout H, Douzery EJ, Lutfalla G, Berthomieu A, Berticat C, Raymond M, Weill M (2006) Acetylcholinesterase genes within the Diptera: takeover and loss in true flies. Proc Biol Sci 273: 2595–2604. https://doi.org/10.1098/rspb.2006.3621 Cha DJ, Lee SH (2015) Evolutionary origin and status of two insect acetylcholinesterases and their structural conservation and differentiation. Evol Dev 17: 109–119. https://doi.org/10.1111/ede.12111
  45. Grauso M, Culetto E, Combes D, Fedon Y, Toutant JP, Arpagaus M (1998) Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Lett 424: 279–284. https://doi.org/10.1016/s0014-5793(98)00191-4
  46. Combes D, Fedon Y, Toutant JP, Arpagaus M (2001) Acetylcholinesterase genes in the nematode Caenorhabditis elegans. Int Rev Cytol 209: 207–239. https://doi.org/10.1016/s0074-7696(01)09013-1
  47. Wu L, Hiebert LS, Klann M, Passamaneck Y, Bastin BR, Schneider SQ, Martindale MQ, Seaver EC, Maslakova SA, Lambert JD (2020) Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands. Nat Commun 11: 4171. https://doi.org/10.1038/s41467-020-17780-7
  48. Budd GE, Jensen S (2017) The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution. Biol Rev Camb Philos Soc 92: 446–473. https://doi.org/10.1111/brv.12239
  49. Burkhardt P, Jekely G (2021) Evolution of synapses and neurotransmitter systems: The divide-and-conquer model for early neural cell-type evolution. Curr Opin Neurobiol 71: 127–138. https://doi.org/10.1016/j.conb.2021.11.002
  50. Moroz LL, Romanova DY, Kohn AB (2021) Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc Lond B Biol Sci 376: 20190762. https://doi.org/10.1098/rstb.2019.0762
  51. Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T,Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci. 72: 1745–1756. https://doi.org/10.1016/s0024-3205(02)02478-5
  52. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76: 116–129. https://doi.org/10.1016/j.neuron.2012.08.036
  53. Brown DA (2019) Acetylcholine and cholinergic receptors. Brain Neurosci Adv 3: 2398212818820506. https://doi.org/10.1177/2398212818820506
  54. Izquierdo PG, Calahorro F, Thisainathan T, Atkins JH, Haszczyn J, Lewis CJ, Tattersall JEH, Green AC, Holden-Dye L, O'Connor V (2022) Cholinergic signaling at the body wall neuromuscular junction distally inhibits feeding behavior in Caenorhabditis elegans. J Biol Chem 298: 101466. https://doi.org/10.1016/j.jbc.2021.101466
  55. Langeloh H, Wasser H, Richter N, Bicker G, Stern M (2018) Neuromuscular transmitter candidates of a centipede (Lithobius forficatus, Chilopoda). Front Zool 15: 28. https://doi.org/10.1186/s12983-018-0274-9
  56. Stern M, Bicker G (2008) Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study. Cell Tissue Res 333: 333–338. https://doi.org/10.1007/s00441-008-0638-0
  57. Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond B Biol Sci 196: 59–72. https://doi.org/10.1098/rspb.1977.0029
  58. Egge N, Arneaud SLB, Fonseca RS, Zuurbier KR, McClendon J, Douglas PM (2021) Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress. Nat Commun 12: 1484. https://doi.org/10.1038/s41467-021-21611-8
  59. Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316: 2213–2219.https://doi.org/10.1016/j.yexcr.2010.05.009

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».