BLOOD ELECTROLYTES AND ELECTROPHYSIOLOGICAL PARAMETERS OF HEART IN A RAT MODEL OF PREDIABETES AND TYPE 1 DIABETES MELLITUS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Type 1 diabetes mellitus (T1DM) is associated with a high risk of cardiovascular complications, including diabetic cardiomyopathy. However, early markers of these disorders are not sufficiently studied. The relevance of this work is driven by the need to identify predictors of cardiac complications in preclinical models. The aim of the study was to assess the levels of blood electrolytes (Na+, K+, Ca2+, Cl-, glucose, lactate) and measure electrocardiogram (ECG) parameters in male Wistar rats with prediabetes and T1DM induced by a streptozotocin injection (35 mg/kg, i.p.). A prospective comparative study was conducted over 60 days on three groups: control (C-group, n = 15), prediabetes (PDM-group, n = 15), and T1DM (DM-group, n = 8). Glucose levels were determined using a glucometer. ECG was recorded on day 56 of the experiment using a “Poli-Spectr-8/V” electrocardiograph. Electrolyte levels were measured on day 60 using an Eros® Reader analyzer. The following statistically significant differences (p < 0.05) were observed compared to the C-group. Glucose levels were higher than in the C-group (6.2 mM): 7.7 mM (PDM) and 24.9 mM (DM). In the DM-group, the concentration of Na+ (137 ± 4 vs. 143 ± 2 mM in the C-group) and Cl- (100 ± 3 vs. 105 ± 1 mM in the C-group) was decreased. The ECG of the DM-group was characterized by an increase in QRS and QT intervals, as well as a decrease in heart rate (HR) compared to the C and PDM groups. Furthermore, the area of the T-wave on the ECG of DM-group rats increased compared to the C-group. The obtained data suggest that, at least in part, ECG changes in the early stages of T1DM in rats may be associated with disturbances in blood electrolyte balance. Rats with prediabetes are characterized by a more favorable blood metabolite and electrolyte profile, which is not associated with significant ECG abnormalities.

About the authors

O. V Chistyakova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St.-Petersburg, Russia

Y. A Filippov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St.-Petersburg, Russia

I. B Sukhov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: sukhov.ivan@gmail.com
St.-Petersburg, Russia

M. G Dobretsov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St.-Petersburg, Russia

References

  1. Дедов ИИ, Шестакова МВ, Викулова ОК, Железнякова АВ, Исаков МА, Сазонова ДВ, Мокрышева НГ (2023) Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010 — 2022 гг. Сахарн диабет 26 (2): 104–123. https://doi.org/10.14341/DM13035
  2. Paolillo S, Marsico F, Prastaro M, Renga F, Esposito L, De Martino F, Di Napoli P, Esposito I, Ambrosio A, Ianniruberto M, Mennella R, Paolillo R, Gargiulo P (2019) Diabetic Cardiomyopathy: Definition, Diagnosis, and Therapeutic Implications. Heart Fail Clin 15: 341–347. https://doi.org/10.1016/j.hfc.2019.02.003
  3. Cai X, Zhang Y, Li M, Wu JHY, Mai L, Li J, Yang Y, Hu Y, Huang Y (2020) Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 370: 848–849. https://doi.org/10.1136/BMJ.M2297
  4. Liamis G, Liberopoulos E, Barkas F, Elisaf M (2014) Diabetes mellitus and electrolyte disorders. World J Clin Cases 2: 488. https://doi.org/10.12998/WJCC.V2.I10.488
  5. Алабовский ВВ, Винокуров АА, Маслов ОВ, Арустамян АА, Земченкова ОВ, Попова ЛИ (2024) Роль ионов натрия в этиологии фибрилляции желудочков сердца. Прикл информ асп мед 27: 67–72. https://doi.org/10.18499/2070-9277-2024-27-2-67-72
  6. Соколова ИБ, Лобов ГИ (2024) Влияние глибенкламида на функциональную активность К АТФ -каналов церебральных артерий у крыс со стрептозотоциновым сахарным диабетом. Сахарн диабет 27: 304–312. https://doi.org/10.14341/DM13103
  7. Морозова МП, Гаврилова СА, Иванов ЕВ, Горбачева АМ, Ржавина ЕМ, Ердяков АК, Джемилова ЗН, Артемова ЕВ, Токмакова АЮ, Кошелев ВБ, Галстян ГР (2019) Динамика вариабельности ритма сердца у крыс со стрептозотоциновым сахарным диабетом. Сахарн диабет 22: 44–52. https://doi.org/10.14341/DM9499
  8. Konopelski P, Ufnal M (2016) Electrocardiography in rats: A comparison to human. Physiol Res 65: 717–725. https://doi.org/10.33549/PHYSIOLRES.933270
  9. King JH, Huang CL, Fraser JA (2013) Determinants of myocardial conduction velocity: implications for arrhythmogenesis. Front Physiol 4: 154. https://doi.org/10.3389/fphys.2013.00154
  10. Martinez-Navarro H, Bertrand A, Doste R, Smith H, Tomek J, Ristagno G, Oliveira RS, Weber Dos Santos R, Pandit SV, Rodriguez B (2024) ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location. Front Cardiovasc Med 11: 1408822. https://doi.org/10.3389/fcvm.2024.1408822
  11. Lei M, Salvage SC, Jackson AP, Huang CL (2024) Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 15: 1342761. https://doi.org/10.3389/fphys.2024.1342761
  12. Федулаев ЮН, Федосеева ОС, Хайретдинова ГА, Рейнер ОВ (2010) Тахизависимая дисперсия интервала QT и нарушения внутрижелудочковой проводимости: клинико-инструментальные параллели. Росскард журн 6: 19–22. https://russcardiol.epub.ru/jour/article/view/1509?locale=ru_RU
  13. Журавлева НВ, Поворинская ОА (2009) Инфаркт миокарда: клиника, диагностика, лечение. Лечащий Врач 2: 6–8.
  14. Красносельский МЯ, Кошкина ЕВ, Федоровский НМ, Горячева ЕВ, Полупан АА, Арефьев АА, Братанова М (2008) Повышение кардиального тропонина-T у больных без инфаркта миокарда. Общ реаниматол 4(4): 36. https://doi.org/10.15360/1813-9779-2008-4-36
  15. Рябыкина ГВ (2020) Изменения электрокардиограммы при очаговом поражении миокарда. Мед алф 14: 19–31. https://doi.org/10.33667/2078-5631-2020-14-19-31
  16. Моргунов ЛЮ (2024) Сахарный диабет и нарушения ритма сердца. Лечащий Врач 3(27): 7–15. https://doi.org/10.51793/OS.2024.27.3.001
  17. Онучина ЕЛ, Соловьев ОВ, Чапурных АВ, Мочалова ОВ, Онучин СГ, Ефремов ДН (2008) Нарушения ритма сердца у пациентов с сахарным диабетом 2 типа. Сахарный диабет 11(1): 25–27. https://doi.org/10.14341/2072-0351-5940
  18. Laptev DN, Riabykina GV, Sobolev AV, Kirillov KK, Seid-Guseĭnov AA (2010) The relationship between the level of glycemia, the length of the QT-interval, and locomotor activity in children and adolescents presenting with type I diabetes mellitus. Probl Endocrinol 56(6): 24–31. https://doi.org/10.14341/probl201056624-31
  19. Alkhaqani A (2023) Electrocardiography Morphology of Electrolytes Disturbance. J Clin Nurs Pract 5: 1–6. https://doi.org/10.35248/JCNP.23.5(1).001
  20. Chen L, LaRocque LM, Efe O, Wang J, Sands JM, Klein JD (2016) Effect of Dapagliflozin Treatment on Fluid and Electrolyte Balance in Diabetic Rats. Am J Med Sci 352: 517–523. https://doi.org/10.1016/j.amjms.2016.08.015
  21. Schaan BD, Dall’Ago P, Maeda CY, Ferlin E, Fernandes TG, Schmid H, Irigoyen MC (2004) Relationship between cardiovascular dysfunction and hyperglycemia in streptozotocin-induced diabetes in rats. Brazilian J Med Biol Res 37: 1895–1902. https://doi.org/10.1590/S0100-879X2004001200016
  22. Anigbogu CN, Speakman RO, Silcox DL, Brown L V., Brown DR, Gong MC, Patwardhan AR, Reynolds LR, Karounos DG, Burgess DE, Baldridge BR, Randall DC (2012) Extended longitudinal analysis of arterial pressure and heart rate control in unanaesthetized rats with type I diabetes. Auton Neurosci Basic Clin 170: 20–29. https://doi.org/10.1016/j.autneu.2012.06.006
  23. Stern S, Sclarowsky S (2009) The eeg in diabetes mellitus. Circulation 120:1633–1636. https://doi.org/10.1161/CIRCULATIONAHA.109.897496
  24. VanHoose L, Sawers Y, Loganathan R, Vacek JL, Stehno-Bittel L, Novikova L, Al-Jarrah M, Smirnova IV (2010) Electrocardiographic changes with the onset of diabetes and the impact of aerobic exercise training in the Zucker Diabetic Fatty (ZDF) rat. Cardiovasc Diabetol 9. https://doi.org/10.1186/1475-2840-9-56
  25. Wang L, Mu Y, Zhao J, Wang X, Che H (2020) IGRNet: A deep learning model for non-invasive, real-time diagnosis of prediabetes through electrocardiograms. Sensors (Switzerland) 20. https://doi.org/10.3390/S20092556

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).