SHORT-TERM EFFECTS OF LEAD EXPOSURE ON CARDIOVASCULAR CELLS OF THE FROG Rana ridibunda in situ

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Lead (Pb2+) is a common and environmentally hazardous element. Lead poses a significant health risk because it can mimic the effects of metal ions such as zinc and calcium, which are involved in cellular signaling and metabolism. Available data re the effects of Pb2+ on myocardial and vascular function are contradictory. Moreover, the effect of Pb2+ on store-operated calcium entry (SOCE) in cardiovascular cells has not been studied. Therefore, the aim of this study was to investigate the short-term effects of Pb2+ on spontaneous contractility of cardiac muscle and blood vessels in situ and determine its toxic effects on SOCE. We used isolated atrial and aortic muscle preparations of male frogs, Rana ridibunda. Pb2+ at concentrations of 0.1 and 0.4 mM had a significant negative inotropic effect, and increased stiffness, and reduced the amplitude of KCl-induced aortic contraction. Pb2+ reversibly blocked SOCE in aortic smooth muscle cells, which may exacerbate its toxic effects on organisms.

About the authors

K. V Sobol

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: peep9@yandex.ru
St. Petersburg, Russia

I. V Shemarova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St. Petersburg, Russia

V. P Nesterov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St. Petersburg, Russia

References

  1. Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8: 55–64. https://doi.org/10.1515/intox-2015-0009
  2. Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M (2025) Heavy metals: toxicity and human health effects. Arch Toxicol 99: 153–209. https://doi.org/10.1007/s00204-024-03903-2
  3. Apostolou A, Garcia-Esquinas E, Fadrowski JJ, McLain P, Weaver VM, Navas-Acien A (2012) Secondhand tobacco smoke: a source of lead exposure in US children and adolescents. Am J Public Health 102: 714–722. https://doi.org/10.2105/AJPH.2011.300161
  4. Arti, Mehra R (2023) Analysis of heavy metals and toxicity level in the tannery effluent and the environs. Environ Monit Assess 195:554. https://doi.org/10.1007/s10661-023-11154-4
  5. Herath IK, Wu S, Ma M, Ping H (2022) Heavy metal toxicity, ecological risk assessment, and pollution sources in a hydropower reservoir. Environ Sci Pollut Res Int 29: 32929–32946. https://doi.org/10.1007/s11356-022-18525-3
  6. Cooper G, North R, Hunt-Smith T, Larson J, Rennie M, Bailey ML, Scarlata S, Merzdorf CS, Bothner B (2025) Persistent Metabolic Changes Are Induced by 24 h Low-Dose Lead (Pb) Exposure in Zebrafish Embryos. Int J Mol Sci 26: 1050. https://doi.org/10.3390/ijms26031050
  7. Morales KA, Lasagna M, Gribenko AV, Yoon Y, Reinhart GD, Lee JC, Cho W, Li P, Igumenova TI (2011) Pb2+ as modulator of protein-membrane interactions. J Am Chem Soc 133: 10599–10611. https://doi.org/10.1021/ja2032772
  8. Ferreira de Mattos G, Costa C, Savio F, Alonso M, Nicolson G (2017) Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 9: 807–825. https://doi.org/10.1007/s12551-017-0303-5
  9. Hu H, Shih R, Rothenberg S, Schwartz BS (2007) The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologies issues. Environ Health Perspect 115: 455–462. https://doi.org/10.1289/ehp.9783
  10. Gidlow DA (2015) Lead toxicity. Occup Med (Lond) 65: 348–356. https://doi.org/10.1093/occmed/kqv018
  11. Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ (2007) Lead exposure and cardiovascular disease — a systematic review. Environ Health Perspect 115: 472–482. https://doi.org/10.1289/ehp.9785
  12. Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168: 812–822. https://doi.org/10.1016/j.ahj.2014.07.007
  13. Cosselman KE, Navas-Acien A, Kaufman JD (2015) Environmental factors in cardiovascular disease. Nat Rev Cardiol 12: 627–642. https://doi.org/10.1038/nrcardio.2015.152
  14. Yao X, Steven Xu X, Yang Y, Zhu Z, Zhu Z, Tao F, Yuan M (2021) Stratification of population in NHANES 2009–2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes. Environ Int 149: 106410. https://doi.org/10.1016/j.envint.2021.106410
  15. Dang P, Tang M, Fan H, Hao J. (2024) Chronic lead exposure and burden of cardiovascular disease during 1990–2019: a systematic analysis of the global burden of disease study. Front Cardiovasc Med 11: 1367681. https://doi.org/10.3389/fcvm.2024.1367681
  16. Navas-Acien A, Selvin E, Sharrett AR, Calderon-Aranda E, Silbergeld E, Guallar E (2004) Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109: 3196–3201. https://doi.org/10.1161/01.CIR.0000130848
  17. Navas-Acien A, Schwartz BS, Rothenberg SJ, Hu H, Silbergeld EK, Guallar E (2008) Bone lead levels and blood pressure endpoints: a meta-analysis. Epidemiology 19: 496–504. https://doi.org/10.1097/EDE.0b013e318162400
  18. Vaziri ND, Khan M (2007) Interplay of reactive oxygen species and nitric oxide in the pathogenesis of experimental lead-induced hypertension. Clin Exp Pharmacol Physiol 34: 920–925. https://doi.org/10.1111/j.1440-1681.2007.04644.x
  19. Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Valsala Gopalakrishnan A (2021) Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) — induced hepatotoxicity — A review. Chemosphere 271: 129735. https://doi.org/10.1016/j.chemosphere.2021.129735
  20. Piccinini F, Favalli L, Chiari MC (1977) Experimental investigations on the contraction induced by lead in arterial smooth muscle. Toxicology 8: 43–51. https://doi.org/10.1016/0300-483x(77)90022-1
  21. Watts SW, Chai S, Webb RC (1995) Lead acetate-induced contraction in rabbit mesenteric artery: interaction with calcium and protein kinase C. Toxicology 99: 55–65. https://doi.org/10.1016/0300-483x(94)03003-k
  22. Valencia I, Castillo EE, Chamorro G, Bobadilla RA, Castillo C (2001) Lead induces endothelium- and Ca2+-independent contraction in rat aortic rings. Pharmacol Toxicol 89: 177–182. https://doi.org/10.1111/j.0901-9928.2001.890406.x
  23. Chao SH, Bu CH, Cheung WY (1995) Stimulation of myosin light-chain kinase by Cd2+ and Pb2+. Arch Toxicol 69: 197–203. https://doi.org/10.1007/s002040050158
  24. Chai SS, Webb RC (1988) Effects of lead on vascular reactivity. Environ Health Perspect 78: 85–89. https://doi.org/10.1289/ehp.887885
  25. Schooling CM, Johnson GD, Grassman J (2019) Effects of blood lead on coronary artery disease and its risk factors: a Mendelian Randomization study. Sci Rep 9:15995. https://doi.org/10.1038/s41598-019-52482-1
  26. Balakin A, Protsenko Y (2025) Physiological simulation of atrial-ventricular mechanical interaction in male rats during the cardiac cycle. Pflugers Arch 477: 159–167. https://doi.org/10.1007/s00424-024-03015-x
  27. Vassallo DV, Lebarch EC, Moreira CM, Wiggers GA, Stefanon I (2008) Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium. Braz J Med Biol Res 41: 789–795. https://doi.org/10.1590/s0100-879x2008000900008
  28. Fioresi M, Simões MR, Furieri LB, Broseghini-Filho GB, Vescovi MV, Stefanon I, Vassallo DV (2014) Chronic lead exposure increases blood pressure and myocardial contractility in rats. PLoS One 9:e96900. https://doi.org/10.1371/journal.pone.0096900
  29. Palacio LC, Pachajoa DC, Durango-Giraldo G, Zapata-Hernandez C, Ugarte JP, Saiz J, Buitrago-Sierra R, Tobón C (2021) Atrial proarrhythmic effect of lead as one of the PM10 metal components of air pollution. An in-silico study. PLoS One 16:e0258313. https://doi.org/10.1371/journal.pone.0258313
  30. Hazari MS, Haykal-Coates N, Winsett DW, Krantz QT, King C, Costa DL, Farraj AK (2011) TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environ Health Perspect 119: 951–957. https://doi.org/10.1289/ehp.1003200
  31. Kim JB, Kim C, Choi E, Park S, Park H, Pak HN, Lee MH, Shin DC, Hwang KC, Joung B (2012) Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation. Toxicol Appl Pharmacol 259: 66–73. https://doi.org/10.1016/j.taap.2011.12.007
  32. Fiorim J, Ribeiro Júnior RF, Silveira EA, Padilha AS, Vescovi MV, de Jesus HC, Stefanon I, Salaices M, Vassallo DV (2011) Low-level lead exposure increases systolic arterial pressure and endothelium-derived vasodilator factors in rat aortas. PLoS One 6:e17117. https://doi.org/10.1371/journal.pone.0017117
  33. Bhullar SK, Shah AK, Dhalla NS (2019) Store-operated calcium channels: Potential target for the therapy of hypertension. Rev Cardiovasc Med 20: 139–151. https://doi.org/10.31083/j.rcm.2019.03.522
  34. Leung FP, Yung LM, Yao X, Laher I, Huang Y (2008) Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol 153: 846–857. https://doi.org/10.1038/sj.bjp.0707455
  35. Xu YJ, Elimban V, Dhalla NS (2015) Reduction of blood pressure by store-operated calcium channel blockers. J Cell Mol Med 19: 2763–7270. https://doi.org/10.1111/jcmm.12684
  36. Kerper LE, Hinkle PM (1997) Lead uptake in brain capillary endothelial cells: activation by calcium store depletion. Toxicol Appl Pharmacol 146: 127–133. https://doi.org/10.1006/taap.1997.8234
  37. Chiu TY, Teng HC, Huang PC, Kao FJ, Yang DM (2009) Dominant role of Orai1 with STIM1 on the cytosolic entry and cytotoxicity of lead ions. Toxicol Sci 110: 353–362. https://doi.org/10.1093/toxsci/kfp099
  38. Feola M. (2021) The influence of arterial stiffness in heart failure: a clinical review. J Geriatr Cardiol 18: 135–140. https://doi.org/10.11909/j.issn.1671-5411
  39. Poręba R, Gać P, Poręba M, Antonowicz-Juchniewicz J, Andrzejak R (2011) Relationship between occupational exposure to lead and local arterial stiffness and left ventricular diastolic function in individuals with arterial hypertension. Toxicol Appl Pharmacol 254: 342–348. https://doi.org/10.1016/j.taap.2011.05.009
  40. Karakulak UN, Yılmaz ÖH, Tutkun E, Ateş İ, Bal C, Gündüzöz M (2017) Evaluation of the ambulatory arterial stiffness index in lead-exposed workers. Anatol J Cardiol 18: 10–14. https://doi.org/10.14744/AnatolJCardiol.2017.7170
  41. Prakriya M, Lewis RS (2015) Store-Operated Calcium Channels. Physiol Rev 95: 1383–1436. https://doi.org/10.1152/physrev.00020.2014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).