SYNAPTOPHYSIN-IMMUNO POSITIVE GRAINS ASSOCIATED WITH AMYL OID PLAQUES IN CEREBRUM STRUCTURES OF 5XFAD MICE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alzheimer's disease (AD) is one of the most common forms of dementia worldwide. A key histopathological feature of AD is the extracellular deposition of beta-amyloid plaques. In AD patients, the development of cognitive impairment is more closely associated with synaptic loss. In this regard, studying the mechanisms behind the synaptic dysfunction and identifying ways of AD correction is relevant. It should be noted, that synaptophysin is one of the main markers of synapses, which is localized in the membranes of presynaptic vesicles. The aim of the study is to morphologically assess the distribution of synaptophysin protein in brain structures of 5xFAD transgenic mice in the presence of amyloid accumulations. Transgenic line of 5xFAD mice (n = 3) was used in the present study. An immunohistochemical staining to synaptophysin with additional alcian blue colouring was carried out to identify synaptic terminals and amyloid clusters in the cortex and hippocampal formation. Clusters of intensely stained synaptophysin-immunopositive grains surrounding the amyloid plaques were detected in the hippocampal formation and cortex. The most pronounced amyloidosis with abnormal distribution of synaptophysin-immunopositive structures has been observed in the subiculum, CA1 region of the hippocampus and the inner (ganglionic and polymorphic) layers of the cortex by morphometric analysis. A positive linear dependence between the area of synaptophysin-immunopositive grains and the size of amyloid plaques in different regions of the hippocampal formation and cortex has been established by regression analyses. The intense accumulation of synaptophysin-immunopositive grains surrounding the amyloid plaques suggest a functional dependence between the progression of amyloid pathology and synaptic dysfunction.

About the authors

A. R Ilina

Institute of Experimental Medicine; Saint-Petersburg Institute of Bioregulation and Gerontology

Email: ilinaanastasiar@gmail.com
St. Petersburg, Russia

K. A Sagitdinova

Institute of Experimental Medicine; St. Petersburg State University

St. Petersburg, Russia

O. V Shamova

Institute of Experimental Medicine

St. Petersburg, Russia

D. E Korzhevsky

Institute of Experimental Medicine

St. Petersburg, Russia

References

  1. Terry RD (1991) Annals of Neurology. John Wiley & Sons Inc, United States.
  2. Utz J, Berner J, Muñoz LE, Oberstein TJ, Kornhuber J, Herrmann M, Maler JM, Spitzer P (2021) Cerebrospinal Fluid of Patients With Alzheimer's Disease Contains Increased Percentages of Synaptophysin-Bearing Microvesicles. Front Aging Neurosci 13: 682115. https://doi.org/10.3389/fnagi.2021.682115
  3. Research Models // ALZFORUM. https://www.alzforum.org/research-models. Accessed 7 Mar 2025.
  4. Sasmita AO, Ong EC, Nazarenko T, Mao S, Komarek L, Thalmann M, Hantakova V, Spieth L, Berghoff SA, Barr HJ Hingerl M, Börensen F, Hirrlinger J, Simons M, Stevens B, Depp C, Nave KA (2024) Parental origin of transgene modulates amyloid-β plaque burden in the 5xFAD mouse model of Alzheimer's disease. Neuron 113: 838–846. https://doi.org/10.1016/j.neuron.2024.12.025
  5. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 26: 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006
  6. Crouzin N (2013) Area-Specific Alterations of Synaptic Plasticity in the 5xFAD Mouse Model of Alzheimer's Disease: Dissociation between Somatosensory Cortex and Hippocampus. PLoS 8(9). https://doi.org/10.1371/journal.pone.0074667
  7. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 14: 5541–5554. https://doi.org/10.2147/IJN.S200490
  8. Kimura R, Ohno M (2009) Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5xFAD Alzheimer mouse model. Neurobiol Dis 33: 229–235. https://doi.org/10.1016/j.nbd.2008.10.006
  9. Xiao NA, Zhang J, Zhou M, Wei Z, Wu XL, Dai XM, Zhu YG, Chen XC (2015) Reduction of Glucose Metabolism in Olfactory Bulb is an Earlier Alzheimer's Disease-related Biomarker in 5xFAD Mice. Chin Med J (Engl) 128: 2220–2227. https://doi.org/10.4103/0366-6999.162507
  10. Фомичева ЕЕ, Шанин СН, Филатенкова ТА, Новикова НС, Дятлова АС, Ищенко АМ, Серебряная НБ (2022) Коррекция поведенческих нарушений и состояния микроглии рекомбинантным антагонистом рецептора IL-1 при экспериментальной черепно-мозговой травме. Рос физиол журн им ИМ Сеченова 108: 1264–1278.
  11. Коржевский ДЭ, Кирик ОВ, Карпенко МН (2014) Теоретические основы и практическое применение методов иммуногистохимии: руководство. Спец-Лит СПб.
  12. Nosova O, Guselnikova V, Korzhevskii D (2023) The application of alcian blue to identify astrocyte-associated amyloid plaques by using fluorescence and confocal microscopy. J Neurosci Meth 387: 109797 https://doi.org/10.1016/j.jneumeth.2023.109797
  13. Schindelin J, Arganda-Carreras I, Frise E (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 7: 676–682. https://doi.org/10.1038/nmeth.2019.
  14. Stephen TL, Tamagnini F, Piegsa J (2019) Imbalance in the response of pre- and post-synaptic components to amyloidopathy. Sci Rep 9: 14837. https://doi.org/10.1038/s41598-019-50781-1
  15. Kurucu H, Colom-Cadena M, Davies C, Wilkins L, King D, Rose J, Tzioras M, Tulloch J, Smith C, Spires-Jones TL (2022) Inhibitory synapse loss and accumulation of amyloid beta in inhibitory presynaptic terminals in Alzheimer's disease. Eur J Neurol 29: 1311–1323. https://doi.org/10.1111/ene.15043
  16. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL (2009) Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaque. Proc. Natl. Acad. Sci. U.S.A. 106: 4012–4017. https://doi.org/10.1073/pnas.0811698106
  17. Бонь ЕИ, Зиматкин СМ (2018) Строение и развитие гиппокампа крысы. Журнал Гродненского государственного медицинского университета 16: 132–138.
  18. Sadleir KR, Kandalepa PC, Buggia-Prevot V (2016) Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease. Acta Neuropathol 132: 235–256. https://doi.org/10.1007/s00401-016-1558-9
  19. Гусельникова ВВ, Разенкова ВА, Фёдорова ЕА, Коржевский ДЭ (2024) Морфологические особенности синаптических структур, ассоциированных с амилоидными бляшками, в коре больших полушарий головного мозга человека. Морфология 162: 330–339.
  20. Santay A, Tomás-Roca L, Rodriguez JR (2020) Estimation of the number of synapses in the hippocampus and brain-wide by volume electron microscopy and genetic labeling. Sci Rep 10: 14014. https://doi.org/10.1038/s41598-020-70859-5
  21. Harwell CS, Coleman MP (2016) Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice. Mol Neurodegeneration 11: 44. https://doi.org/10.1186/s13024-016-0110-7
  22. Tampellini D, Capetillo-Zarate E, Dumont M, Huang Z, Yu F, Lin MT, Gouras GK (2010) Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J Neurosci 30: 14299–14304. https://doi.org/10.1523/JNEUROSCI.3383-10.2010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).