MECHANISMS OF SYNAPTIC VESICLE RECYCLING IN CENTRAL SYNAPSES: NEW FACTS AND UNRESOLVED PROBLEMS
- Authors: Nifantova N.V.1, Sibarov D.A.1, Shupliakov O.V.1,2,3
-
Affiliations:
- Sechenov's Institute of Evolutionary Physiology and Biochemistry
- St.-Petersburg State University, Institute of Translational Biomedicine
- Karolinska Institutet
- Issue: Vol 61, No 5-6 (2025)
- Pages: 282-293
- Section: REVIEWS
- URL: https://journals.rcsi.science/0044-4529/article/view/374142
- DOI: https://doi.org/10.7868/S3034552925050021
- ID: 374142
Cite item
Abstract
Keywords
About the authors
N. V. Nifantova
Sechenov's Institute of Evolutionary Physiology and BiochemistrySt.-Petersburg, Russia
D. A. Sibarov
Sechenov's Institute of Evolutionary Physiology and Biochemistry
Email: dsibarov@gmail.com
St.-Petersburg, Russia
O. V. Shupliakov
Sechenov's Institute of Evolutionary Physiology and Biochemistry; St.-Petersburg State University, Institute of Translational Biomedicine; Karolinska Institutet
Email: oleg.shupliakov@ki.se
St.-Petersburg, Russia; St. Petersburg, Russia; Stockholm, Sweden
References
- Gundelfinger ED, Fejtova A (2012) Molecular organization and plasticity of the cytomatrix at the active zone. Curr Opin Neurobiol 22: 423–430.
- Jin Y, Zhai RG (2023) Presynaptic Cytomatrix Proteins. Adv Neurobiol 33: 23–42.
- Brunger AT, Choi UB, Lai Y, Leitz J, White KI, Zhou Q (2019) The pre-synaptic fusion machinery. Curr Opin Struct Biol 54: 179–188.
- Wu X, Cai Q, Shen Z, Chen X, Zeng M, Du S, Zhang M (2019) RIM and RIM-BP form presynaptic activezone-like condensates via phase separation. Mol Cell 73: 971–984 e975.
- Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6: 57–69.
- Wu X, Ganzella M, Zhou J, Zhu S, Jahn R, Zhang M (2021) Vesicle tethering on the surface of phase-separated active zone condensates. Mol Cell 81: 13–24 e17.
- Wu X, Qiu H, Zhang M (2023) Interactions between membraneless condensates and membranous organelles at the presynapse: a phase separation view of synaptic vesicle cycle. J Mol Biol 435: 167629.
- Alberti S (2017) Phase separation in biology. Curr Biol 27: R1097–R1102.
- Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28: 420–435.
- Pechstein A, Tomilin N, Fredrich K, Vorontsova O, Sopova E, Evergren E, Haucke V, Brodin L, Shupliakov O (2020) Vesicle clustering in a living synapse depends on a synapsin region that mediates phase separation. Cell Rep 30: 2594–2602 e2593.
- Tao CL, Tian CL, Liu YT, Lu ZH, Qi L, Li XW, Li C, Shen X, Gu ML, Huang WL, Liu S, Yang LQ, Liao Z, Ma X, Wu J, Sun J, Wang P, Lau PM, Zhou ZH, Bi GQ (2025) Kiss-shrink-run unifies mechanisms for synaptic vesicle exocytosis and hyperfast recycling. Science 390: eads7954.
- Evergren E, Benfenati F, Shupliakov O (2007) The synapsin cycle: a view from the synaptic endocytic zone. J Neurosci Res 85: 2648–2656.
- Milovanovic D, Wu Y, Bian X, De Camilli P (2018) A liquid phase of synapsin and lipid vesicles. Science 361: 604–607.
- Brodin L, Milovanovic D, Rizzoli SO, Shupliakov O (2022) Alpha-synuclein in the synaptic vesicle liquid phase: active player or passive bystander? Front Mol Biosci 9: 891508.
- Hoffmann C, Sansevrino R, Morabito G, Logan C, Vabulas RM, Ulusoy A, Ganzella M, Milovanovic D (2021) Synapsin condensates recruit alpha-synuclein. J Mol Biol 433: 166961.
- Lautenschlager J, Kaminski CF, Kaminski Schierle GS (2017) Alpha-synuclein — regulator of exocytosis, endocytosis, or both? Trends Cell Biol 27: 468–479.
- Shishkov AGN, Nifantova NV, Korenkova OM, Sopova ES, Brodin L, Shupliakov O (2023) BAR domain proteins as putative regulators of the protein liquid phase in nerve terminals in the central nervous system. Biochemistry (Moscow) Suppl Ser A Membr Cell Biol 17: 69–82.
- Wang SSH, Held RG, Wong MY, Liu C, Karakhanyan A, Kaeser PS (2016) Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking. Neuron 91: 777–791.
- McDonald NA, Fetter RD, Shen K (2020) Assembly of synaptic active zones requires phase separation of scaffold molecules. Nature 588: 454–458.
- Emperador-Melero J, Wong MY, Wang SSH, de Nola G, Nyitrai H, Kirchhausen T, Kaeser PS (2021) PKC-phosphorylation of Liprin-alpha3 triggers phase separation and controls presynaptic active zone structure. Nat Commun 12: 3057.
- Liang M, Jin G, Xie X, Zhang W, Li K, Niu F, Yu C, Wei Z (2021) Oligomerized liprin-alpha promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins. Cell Rep 34: 108901.
- Song SH, Augustine GJ (2023) Different mechanisms of synapsin-induced vesicle clustering at inhibitory and excitatory synapses. Cell Rep 42: 113004.
- Gitler D, Cheng Q, Greengard P, Augustine GJ (2008) Synapsin IIa controls the reserve pool of glutamatergic synaptic vesicles. J Neurosci 28: 10835–10843.
- Song SH, Augustine GJ (2016) Synapsin Isoforms Regulating GABA Release from Hippocampal Interneurons. J Neurosci 36: 6742–6757.
- Cousin MA, Nicholls DG (1997) Synaptic vesicle recycling in cultured cerebellar granule cells: role of vesicular acidification and refilling. J Neurochem 69: 1927–1935.
- Cousin MA, Robinson PJ (1999) Mechanisms of synaptic vesicle recycling illuminated by fluorescent dyes. J Neurochem 73: 2227–2239.
- Rizzoli SO (2014) Synaptic vesicle recycling: steps and principles. EMBO J 33: 788–822.
- Roos J, Kelly RB (1999) The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr Biol 9: 1411–1414.
- Maycox PR, Link E, Reetz A, Morris SA, Jahn R (1992) Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J Cell Biol 118: 1379–1388.
- Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51: 773–786.
- Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, Kovtun O, Umasankar PK, Wrobel AG, Kaufman JGG, Gray SR, Qu K, Evans PR, Fritzsche M, Sroubek F, Höning S, Briggs JAG, Kelly BT, Owen DJ, Traub LM (2022) FCHO controls AP2’s initiating role in endocytosis through a PtdIns(4,5)P2-dependent switch. Sci Adv 8: eabn2018.
- Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R, McMahon HT (2010) FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328: 1281–1284.
- Day KJ, Kago G, Wang L, Richter JB, Hayden CC, Lafer EM, Stachowiak JC (2021) Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat Cell Biol 23: 366–376.
- Shupliakov O, Löw P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L (1997) Synaptic vesicle endocytosis impaired by disruption of dynamin–SH3 domain interactions. Science 276: 259–263.
- Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1: 33–39.
- Gad H, Ringstad N, Löw P, Kjaerulff O, Gustafsson J, Wenk M, Di Paolo G, Nemoto Y, Crun J, Ellisman MH, De Camilli P, Shupliakov O, Brodin L (2000) Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27: 301–312.
- Pechstein A, Gerth F, Milosevic I, Jäpel M, Eichhorn-Grünig M, Vorontsova O, Bacetic J, Maritzen T, Shupliakov O, Freund C, Haucke V (2015) Vesicle uncoating regulated by SH3–SH3 domain-mediated complex formation between endophilin and intersectin at synapses. EMBO Rep 16: 232–239.
- Lou X (2018) Sensing exocytosis and triggering endocytosis at synapses: synaptic vesicle exocytosis-endocytosis coupling. Front Cell Neurosci 12: 66.
- Gowrisankaran S, Houy S, Del Castillo JGP, Steubler V, Gelker M, Kroll J, Pinheiro PS, Schwitters D, Halbsgut N, Pechstein A, van Weering JRT, Maritzen T, Haucke V, Raimundo N, Sørensen JB, Milosevic I (2020) Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin. Nat Commun 11: 1266.
- Ogunmowo T, Hoffmann C, Pepper R, Wang H, Gowrisankaran S, Ho A, Raychaudhuri S, Cooper BH, Milosevic I, Milovanovic D, Watanabe S (2025) Intersectin and endophilin condensates prime synaptic vesicles for release site replenishment. Nat Neurosci 28: 1649–1662.
- Wu XS, Lee SH, Sheng J, Zhang Z, Zhao WD, Wang D, Jin Y, Charnay P, Ervasti JM, Wu LG (2016) Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses. Neuron 92: 1020–1035.
- Wu XS, Elias S, Liu H, Heureaux J, Wen PJ, Liu AP, Kozlov MM, Wu LG (2017) Membrane tension inhibits rapid and slow endocytosis in secretory cells. Biophys J 113: 2406–2414.
- Taylor MJ, Perrais D, Merrifield CJ (2011) A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 9: e1000604.
- Watanabe S, Boucrot E (2017) Fast and ultrafast endocytosis. Curr Opin Cell Biol 47: 64–71.
- Shin W, Wei L, Arpino G, Ge L, Guo X, Chan CY, Hamid E, Shupliakov O, Bleck CKE, Wu LG (2021) Preformed omega-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron 109: 3119–3134.
- Chanaday NL, Cousin MA, Milosevic I, Watanabe S, Morgan JR (2019) The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. J Neurosci 39: 8209–8216.
- Qin X, Tsien RW, Park H (2019) Real-time three-dimensional tracking of single synaptic vesicles reveals that synaptic vesicles undergoing kiss-and-run fusion remain close to their original fusion site before reuse. Biochem Biophys Res Commun 514: 1004–1008.
- Watanabe S, Trimbuch T, Camacho-Pérez M, Rost BR, Brokowski B, Söhl-Kielczynski B, Felies A, Davis MW, Rosenmund C, Jorgensen EM (2014) Clathrin regenerates synaptic vesicles from endosomes. Nature 515: 228–233.
- Watanabe S, Rost BR, Camacho-Perez M, Davis MW, Sohl-Kielczynski B, Rosenmund C, Jorgensen EM (2013) Ultrafast endocytosis at mouse hippocampal synapses. Nature 504: 242–247.
- Watanabe S, Rost BR, Camacho-Perez M, Davis MW, Sohl-Kielczynski B, Rosenmund C, Jorgensen EM (2013) Ultrafast endocytosis at mouse hippocampal synapses. Nature 504: 242–247.
- Watanabe S, Mamer LE, Raychaudhuri S, Luvsanjav D Eisen J, Trimbuch T, Söhl-Kielczynski B, Fenske P, Milosevic I, Rosenmund C, Jorgensen EM (2018) Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. Neuron 98: 1184–1197 e1186.
- Imoto Y, Raychaudhuri S, Ma Y, Fenske P, Sandoval E, Itoh K, Blumrich EM, Matsubayashi HT, Mamer L, Zarebidaki F, Söhl-Kielczynski B, Trimbuch T, Nayak S, Iwasa JH, Liu J, Wu B, Ha T, Inoue T, Jorgensen EM, Cousin MA, Rosenmund C, Watanabe S (2022) Dynamin is primed at endocytic sites for ultrafast endocytosis. Neuron 110: 2815–2835 e2813.
- Cousin MA (2009) Activity-dependent bulk synaptic vesicle endocytosis: a fast, high-capacity membrane retrieval mechanism. Mol Neurobiol 39: 185–189.
- Clayton EL, Evans GJ, Cousin MA (2008) Bulk synaptic vesicle endocytosis is rapidly triggered during strong stimulation. J Neurosci 28: 6627–6632.
- Richards DA, Guatimosim C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27: 551–559.
- Cheung G, Jupp OJ, Cousin MA (2010) Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. J Neurosci 30: 8151–8161.
- Nguyen TH, Qiu X, Sun J, Meunier FA (2014) Bulk endocytosis at neuronal synapses. Sci China Life Sci 57: 378–383.
- Morton A, Marland JR, Cousin MA (2015) Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis. J Neurochem 134: 405–415.
- Clayton EL, Evans GJ, Cousin MA (2007) Activity-dependent control of bulk endocytosis by protein dephosphorylation in central nerve terminals. J Physiol 585: 687–691.
- Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24: 659–665.
- Yao CK, Liu YT, Lee IC, Wang YT, Wu PY (2017) A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis. PLoS Biol 15: e2000931.
- Laporte MH, Chi KI, Caudal LC, Zhao N, Schwarz Y, Rolland M, Martinez-Hernandez J, Martineau M, Chatellard C, Denarier E, Mercier V, Lemaître F, Blot B, Moutaux E, Cazorla M, Perrais D, Lanté F, Bruns D, Fraboulet S, Hemming FJ, Kirchhoff F, Sadoul R (2022) Alix is required for activity-dependent bulk endocytosis at brain synapses. PLoS Biol 20: e3001659.
- Mahul-Mellier AL, Hemming FJ, Blot B, Fraboulet S, Sadoul R (2006) Alix, making a link between apoptosis-linked gene-2, the endosomal sorting complexes required for transport, and neuronal death in vivo. J Neurosci 26: 542–549.
- Maki M, Takahara T, Shibata H (2016) Multifaceted roles of ALG-2 in Ca(2+)-regulated membrane trafficking. Int J Mol Sci 17.
- Gallop JL, Jao CC, Kent HM, Butler PJ, Evans PR, Langen R, McMahon HT (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25: 2898–2910.
- Kokotos AC, Peltier J, Davenport EC, Trost M, Cousin MA (2018) Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11. Proc Natl Acad Sci U S A 115: E10177–E10186.
- Qualmann B, Roos J, DiGregorio PJ, Kelly RB (1999) Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 10: 501–513.
- Andersson F, Jakobsson J, Low P, Shupliakov O, Brodin L (2008) Perturbation of syndapin/PACSIN impairs synaptic vesicle recycling evoked by intense stimulation. J Neurosci 28: 3925–3933.
- Anggono V, Smillie KJ, Graham ME, Valova VA, Cousin MA, Robinson PJ (2006) Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat Neurosci 9: 752–760.
- Itoh T, De Camilli P (2006) BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761: 897–912.
- Clayton EL, Cousin MA (2009) The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J Neurochem 111: 901–914.
- Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R, Boeckers TM, Fässler R, Hübner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B (2011) Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J 30: 4955–4969.
- Cheung G, Cousin MA (2013) Synaptic vesicle generation from activity-dependent bulk endosomes requires calcium and calcineurin. J Neurosci 33: 3370–3379.
- Cheung G, Cousin MA (2019) Synaptic vesicle generation from activity-dependent bulk endosomes requires a dephosphorylation-dependent dynamin-syndapin interaction. J Neurochem 151: 570–583.
- Rao Y, Haucke V (2011) Membrane shaping by the Bin/ amphiphysin/Rvs (BAR) domain protein superfamily. Cell Mol Life Sci 68: 3983–3993.
- Evans GJ, Cousin MA (2007) Activity-dependent control of slow synaptic vesicle endocytosis by cyclin-dependent kinase 5. J Neurosci 27: 401–411.
- Clayton EL, Sue N, Smillie KJ, O'Leary T, Bache N, Cheung G, Cole AR, Wyllie DJ, Sutherland C, Robinson PJ, Cousin MA (2010) Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat Neurosci 13: 845–851.
- Zhai RG, Bellen HJ (2004) The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19: 262–270.
- Evergren E, Zotova E, Brodin L, Shupliakov O (2006) Differential efficiency of the endocytic machinery in tonic and phasic synapses. Neuroscience 141: 123–131
- Brodin L, Bakeeva L, Shupliakov O (1999) Presynaptic mitochondria and the temporal pattern of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354: 365–372.
- Balaji J, Armbruster M, Ryan TA (2008) Calcium control of endocytic capacity at a CNS synapse. J Neurosci 28: 6742–6749.
- Armbruster M, Messa M, Ferguson SM, De Camilli P, Ryan TA (2013) Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts. Elife 2: e00845.
- He L, Wu XS, Mohan R, Wu LG (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444: 102–105.
- Koch N, Koch D, Krueger S, Tröger J, Sabanov V, Ahmed T, McMillan LE, Wolf D, Montag D, Kessels MM, Balschun D, Qualmann B (2020) Syndapin I loss-of-function in mice leads to schizophrenia-like symptoms. Cereb Cortex 30: 4306–4324.
- Bonnycastle K, Nawaz MS, Kind PC, Cousin MA (2025) Convergent depression of activity-dependent bulk endocytosis in rodent models of autism spectrum disorder. Mol Autism 16: 26.
- Bonnycastle K, Kind PC, Cousin MA (2022) FMRP sustains presynaptic function via control of activity-dependent bulk endocytosis. J Neurosci 42: 1618–1628.
- Kim N, Bonnycastle K, Kind PC, Cousin MA (2024) Delayed recruitment of activity-dependent bulk endocytosis in Fmr1 knockout neurons. J Neurochem 168: 3019–3033.
- Wu F, Yao PJ (2009) Clathrin-mediated endocytosis and Alzheimer's disease: an update. Ageing Res Rev 8: 147–149.
- Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G, Mennerick S, Holtzman DM (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58: 42–51.
- Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG (2021) Upregulation of APP endocytosis by neuronal aging drives amyloid-dependent synapse loss. J Cell Sci 134.
- Maninger JK, Nowak K, Goberdhan S, O'Donoghue R, Connor-Robson N (2024) Cell type-specific functions of Alzheimer's disease endocytic risk genes. Philos Trans R Soc Lond B Biol Sci 379: 20220378.
- Cai W, Li L, Sang S, Pan X, Zhong C (2023) Physiological Roles of beta-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 39: 1289–1308.
- Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I (2009) Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12: 1567–1576.
- Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M, Kayed R, Zurzolo C, Di Paolo G, Duff KE (2013) Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288: 1856–1870.
- Ray S, Singh N, Kumar R, Patel K, Pandey S, Datta D, Mahato J, Panigrahi R, Navalkar A, Mehra S, Gadhe L, Chatterjee D, Sawner AS, Maiti S, Bhatia S, Gerez JA, Chowdhury A, Kumar A, Padinhateeri R, Riek R, Krishnamoorthy G, Maji SK (2020) Alpha-synuclein aggregation nucleates through liquid–liquid phase separation. Nat Chem 12: 705–716.
- Zou L, Tian Y, Zhang Z (2021) Dysfunction of synaptic vesicle endocytosis in Parkinson's disease. Front Integr Neurosci 15: 619160.
- Sudhof TC (2021) The cell biology of synapse formation. J Cell Biol 220(7): e202103052.
- Sudhof TC (2018) Towards an Understanding of Synapse Formation. Neuron 100(2): 276–293.
Supplementary files


