MITOCHONDRIA AND ANTIOXIDANT PROTECTION DURING HIBERNATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hibernation is the ability of a number of animals to hibernate for a long time, is a natural hypometabolic condition that allows hibernating animals to tolerate such adverse environmental factors as a decrease in temperature, lack of food and water. The ability to hibernate is a consequence of adaptations accumulated during evolution at various physiological levels, among which the key is molecular adaptation to hypoxia, which eliminates not only the negative effect of oxygen deficiency on cells, but also the danger of oxidative stress (OS) induced by hypoxia. This aspect of hibernation is of great medical importance, as understanding the mechanisms underlying the adaptation of hibernators to hypoxia and OS can help solve a number of important problems in the prevention of posthypoxic complications in people with chronic neurodegenerative and heart diseases. The molecular basis of adaptation to hypoxia in hibernators is the presence of an effective antioxidant system (AOS) and regulatory mechanisms that ensure the extreme plasticity of mitochondria (intracellular ROS inducers), especially pronounced when animals come out of hibernation. During this period, the rate of oxygen consumption increases in cells and the antioxidant system (AOS) is activated, including low molecular weight (glutathione (GSH)) and enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GP), glutathione-S-transferase (GST) and glutathione reductase (GR) components. The thioredoxin system and vitamins (A, C, and E) are also involved in the process of protecting tissues from oxygen free radicals in hibernators. Despite the close interest in the problem of regulating ROS production in the mitochondria of hibernators, the question of the participation of antioxidant systems and its individual components in the detoxification of excess ROS products during various periods of natural hibernation has not been sufficiently studied. The question of the possibility of extrapolating the data obtained on model animals to humans remains important. This review summarizes and analyzes the latest data on advances in the study of mitochondria and antioxidant protection during hibernation in mammals, mainly ground squirrels, which are generally accepted experimental models of hibernation.

About the authors

I. V Shemarova

Sechenov Institute of Evolution Physiology and Biochemistry RAS, St-Petersburg, Russia

Email: irina-shemarova@yandex.ru
St-Petersburg, Russia

E. R Nikitina

Sechenov Institute of Evolution Physiology and Biochemistry RAS, St-Petersburg, Russia

St-Petersburg, Russia

References

  1. Угаров ГС (2019) Гипобиология. Монография. Москва Издательский дом Академии Естествознания 227 с.
  2. Антонова ЕП, Илюха ВА, Сергина СН (2015) Антиоксидантная защита у зимоспящих млекопитающих. Принципы экологии 4(2): 4–20.
  3. Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB (2021) The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms. Front Physiol 11: 623665.
  4. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83(4): 1153–1181.
  5. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1): 47–95.
  6. Tan JX, Finkel T (2020) Mitochondria as intracellular signaling platforms in health and disease. J Cell Biol 219(5): e202002179.
  7. Bartz RR, Piantadosi CA (2010) Clinical review: oxygen as a signaling molecule. Crit Care14(5): 234.
  8. Staples JF, Mathers KE, Duffy BM (2022) Mitochondrial Metabolism in Hibernation: Regulation and Implications. Physiology (Bethesda) 37(5).
  9. Судаков НП, Никифоров СБ, Константинов ЮМ, Якубов ЛА, Новикова НА, Карамышева АН (2006) Механизмы участия митохондрий в развитии патологических процессов, сопровождающихся ишемией и реперфузией Acta Biomedica Scientifica 5: 332–336.
  10. Алламуратов ШИ (1999) Энергетический обмен тепло- и холоднокровных организмов при различных гипометаболических состояниях. Автореферат дис. докт. биол. наук Ташкент 41 с.
  11. Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2: 13.
  12. Jensen BS, Pardue S, Duffy B, Kevil CG, Staples JF, Fago A (2021) Suppression of mitochondrial respiration by hydrogen sulfide in hibernating 13-lined ground squirrels. Free Radic Biol Med 169: 181–186.
  13. Mathers KE, McFarlane SV, Zhao L, Staples JF (2017) Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes. J Comp Physiol B 187: 227–234.
  14. de Veij Mestdagh CF, Smit AB, Henning RH, van Kesteren RE (2023) Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation. Cells 13(1): 12.
  15. Brooks SPJ, Storey KB (2004) Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis. J Comp Physiol B 62: 3–28.
  16. Chazarin B, Storey KB, Ziemianin A, Chanon S, Plumel M, Chery I, Durand C, Evans AL, Arnemo JM, Zedrosser A, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Lefai E, Bertile F (2019) Metabolic reprogramming involving glycolysis in the hibernating brown bear skeletal muscle. Front Zool 16: 12.
  17. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15): 1509–1517.
  18. Nedergaard J, Cannon B (2018) Brown adipose tissue as a heat-producing thermoeffector. Handb Clin Neurol 156:137–152.
  19. van der Lans AA, Wierts R, Vosselman MJ, Schrauwen P, Brans B, van Marken Lichtenbelt WD (2014) Cold-activated brown adipose tissue in human adults: methodological issues. Am J Physiol Regul Integr Comp Physiol 307(2): R103–R113.
  20. Jastroch M (2017) Uncoupling protein 1 controls reactive oxygen species in brown adipose tissue. Proc Natl Acad Sci USA 114: 7744–7746.
  21. Takeda Y, Dai P (2022) Chronic Fatty Acid Depletion Induces Uncoupling Protein 1 (UCP1) Expression to Coordinate Mitochondrial Inducible Proton Leak in a Human-Brown-Adipocyte Model. Cells 11(13): 2038.
  22. Barger JL, Barnes BM, Boyer BB (2006) Regulation of UCP1 and UCP3 in arctic ground squirrels and relation with mitochondrial proton leak. J Appl Physiol 101(1): 339–347.
  23. Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D, Vetrivelan R, Clish CB, Robinson AJ, Gygi SP, Spiegelman BM (2016) Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532(7597): 112–116.
  24. Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD (2010) Mitochondrial uncoupling and lifespan. Mech Ageing Dev 131(7–8): 463–472.
  25. von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann NY Acad Sci 908: 99–110.
  26. Gao X, Yu X, Zhang C, Wang Y, Sun Y, Sun H, Zhang H, Shi Y, He X. (2022) Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases. Stem Cell Rev Rep 18(7):2315–2327.
  27. Geisler JG (2019) 2,4-Dinitrophenol as medicine. Cells 8: 280.
  28. Tøien Ø, Drew KL, Chao ML, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 281(2): R572–R583.
  29. Huang M, Wang C, Liu J, Liu Q, Tian Y, Li X, Lu W, Zhang D, Yu H (2025) The Role of Lipid Metabolic Reprogramming in the Hibernation of Chipmunks. Animals (Basel) 15(14): 2091.
  30. Tessier SN, Breedon SA, Storey KB (2021) Modulating Nrf2 transcription factor activity: Revealing the regulatory mechanisms of antioxidant defenses during hibernation in 13-lined ground squirrels. Cell Biochem Funct 39(5): 623–635.
  31. Моршнева АВ (2020) Транскрипционные факторы FoxO как многофункциональные регуляторы клеточных процессов. Цитология 62(10): 687–698.
  32. Wu CW, Storey KB (2014) FoxO3a-mediated activation of stress responsive genes during early torpor in a mammalian hibernator. Mol Cell Biochem 390(1–2): 185–195.
  33. Dowell P, Otto TC, Adi S, Lane MD (2003) Convergence of peroxisome proliferator-activated receptor γ and Foxo1 signaling pathways. J Biol Chem 278: 45485–45491.
  34. Hirota K, Daitoku H, Matsuzaki H, Araya N, Yamagata K, Asada S, Sugaya T, Fukamizu A (2003) Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem 278: 13056–13060.
  35. von Groote-Bidlingmaier F, Schmoll D, Orth HM, Joost HG, Becker W, Barthel A (2003) DYRK1 is a co-activator of FKHR (FOXO1a)-dependent glucose-6-phosphatase gene expression. Biochem Biophys Res Commun 300: 764–769.
  36. Lee S, Dong HH (2017) FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol 233(2): R67–R79.
  37. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47: 89–116.
  38. Jankovic A, Kalezic A, Korac A, Buzadzic B, Storey KB, Korac B(2024) Integrated Redox-Metabolic Orchestration Sustains Life in Hibernating Ground Squirrels. Antioxid Redox Signal 40(4–6): 345–368.
  39. Wei Y, Zhang J, Xu S, Peng X, Yan X, Li X, Wang H, Chang H, Gao Y (2018) Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cycle in hibernating Daurian ground squirrels. Open Biol 8:180068.
  40. Sykiotis GP, Habeos IG, Samuelson AV, Bohmann D (2011) The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr Opin Clin Nutr Metab Care 14: 41–48.
  41. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53: 401–426.
  42. Leonardo CC, Doré S (2011) Dietary flavonoids are neuroprotective through Nrf2-coordinated induction of endogenous cytoprotective proteins. Nutr Neurosci 14(5): 226–236.
  43. Soriano FX, Baxter P, Murray LM, Sporn MB, Gillingwater TH, Hardingham GE (2009) Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol Cells 27(3): 279–282.
  44. Ullah S, Ahmad T, Ikram M, Rasheed HM, Khan MI, Khan T, Alsahli TG, Alzarea SI, Althobaiti M, Shah AJ(2023) 7-Hydroxy Frullanolide Ameliorates IsoproterenolInduced Myocardial Injury through Modification of iNOS and Nrf2 Genes. Biomedicines 11(9): 2470.
  45. Biswas M, Chan JY (2010) Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol 244(1): 16–20.
  46. Xu L, Yu Y, Sang R, Li J, Ge B, Zhang X (2018) Protective Effects of Taraxasterol against Ethanol-Induced Liver Injury by Regulating CYP2E1/Nrf2/HO-1 and NFκB Signaling Pathways in Mice. Oxid Med Cell Longev 8284107.
  47. Sun Z, Zhang S, Chan JY, Zhang DD (2007). Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol. Cell Biol. 27 6334–6349.
  48. Bryan HK, Olayanju A, Goldring CE, Park BK (2013). The Nrf2 cell defence pathway: keap1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol. 85 705–717.
  49. Меньщикова ЕБ, Зенков НК, Кожин ПМ, Чечушков АВ, Павлов ВС, Ромах ЛП, Храпова МВ, Серых АЕ, Грицык ОБ, Кандалинцева НВ (2020) Влияние новых водорастворимых фенольных антиоксидантов на активность Nrf2-подконтрольных ферментов, систему глутатиона и транслокацию Nrf2 в ядро. Сибирский научный медицинский журнал 40(6): 58–69.
  50. Zong H, Li X, Lin H, Hou C, Ma F (2017). Lipoxin A4 pretreatment mitigates skeletal muscle ischemia-reperfusion injury in rats. Am. J. Transl. Res. 9 1139–1150.
  51. Wei Y, Zhang J, Yan X, Peng X, Xu S, Chang H, Wang H, Gao Y (2019) Remarkable Protective Effects of Nrf2-Mediated Antioxidant Enzymes and Tissue Specificity in Different Skeletal Muscles of Daurian Ground Squirrels Over the Torpor-Arousal Cycle. Front Physiol 10: 1449.
  52. Morin P Jr, Ni Z, McMullen DC, Storey KB (2008) Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, Spermophilus tridecemlineatus. Mol Cell Biochem 312: 121–129.
  53. Xu R, Andres-Mateos E, Mejias R, MacDonald EM, Leinwand LA, Merriman DK, Fink RH, Cohn RD (2013) Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol 247: 392–401.
  54. Ni Z, Storey KB (2010) Heme oxygenase expression and Nrf2 signaling during hibernation in ground squirrels. Can J Physiol Pharmacol 88(3): 379–387.
  55. Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R (2000) Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol 278(2): H643–H651.
  56. Jais A, Einwallner E, Sharif O, Gossens K, Lu TT, Soyal SM, Medgyesi D, Neureiter D, Paier-Pourani J, Dalgaard K, Duvigneau JC, Lindroos-Christensen J, Zapf TC, Amann S, Saluzzo S, Jantscher F, Stiedl P, Todoric J, Martins R, Oberkofler H, Müller S, Hauser-Kronberger C, Kenner L, Casanova E, Sutterlüty-Fall H, Bilban M, Miller K, Kozlov AV, Krempler F, Knapp S, Lumeng CN, Patsch W, Wagner O, Pospisilik JA, Esterbauer H (2014) Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 158(1): 25–40.
  57. Wu CW, Biggar KK, Storey KB (2013) Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance. Braz J Med Biol Res 46(1): 1–13.
  58. Larson J, Park TJ (2009) Extreme hypoxia tolerance of naked mole-rat brain. Neuroreport 20(18): 1634–1637.
  59. Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R (2015) Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci USA 112(12): 3722–3727.
  60. Lewis KN, Mele J, Hornsby PJ, Buffenstein R (2012) Stress resistance in the naked mole-rat: the bare essentials — a mini-review. Gerontology 58(5): 453–462.
  61. Kurzawski M, Dziedziejko V, Urasińska E, Post M, Wójcicki M, Miętkiewski J, Droździk M (2012) Nuclear factor erythroid 2-like 2 (Nrf2) expression in end-stage liver disease. Environ Toxicol Pharmacol 34(1): 87–95.
  62. Yao D, Bao L, Wang S, Tan M, Xu Y, Wu T, Zhang Z, Gong K (2024) Isoliquiritigenin alleviates myocardial ischemia-reperfusion injury by regulating the Nrf2/HO-1/SLC7a11/GPX4 axis in mice. Free Radic Biol Med 221: 1–12.
  63. Brunet-Rossinni AK (2004) Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 125(1): 11–20.
  64. Brown JC, Chung DJ, Belgrave KR, Staples JF (2012) Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 302(1): R15–R28.
  65. Duffy BM, Staples JF (2022) Arousal from Torpor Increases Oxidative Damage in the Hibernating ThirteenLined Ground Squirrel (Ictidomys tridecemlineatus). Physiol Biochem Zool 95(3): 229–238.
  66. Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, Richardson A, Austad SN, Chaudhuri AR (2009) The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 23(7): 2317–2326.
  67. Абдуллаев В Р (2005) Интенсивность процессов перекисного окисления липидов тканей сусликов в динамике зимней спячки. Автореф. канд. дисс. Махачкала.28 с.
  68. Page MM, Peters CW, Staples JF, Stuart JA (2009) Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus. Comp Biochem Physiol A Mol Integr Physiol 152(1): 115–122.
  69. Vucetic M, Stancic A, Otasevic V, Jankovic A, Korac A, Markelic M, Velickovic K, Golic I, Buzadzic B, Storey KB, Korac B (2013) The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update. Free Radic Biol Med 65: 916–924.
  70. Dave KR, Christian SL, Perez-Pinzon MA, Drew KL (2012) Neuroprotection: lessons from hibernators. Comp Biochem Physiol B Biochem Mol Biol 162(1–3): 1–9.
  71. Маршалов ДВ, Петренко АП, Глушач ИА (2008) Реперфузионный синдром: понятие, определение, классификация. Патология кровообращения и кардиохирургия 3: 67–72.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).