Search and identification of serum proteins with high osmotic activity in pike Esox lucius

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The search and identification of proteins with high osmotic activity (OAPs) in the blood serum of a representative of albumin-containing teleost fish — pike Esox lucius L. were carried out using 2D-electrophoresis and MALDI mass-spectrometry. Using the criterion of high negative charge of proteins in disk-electrophoresis, 8 extracellular and one intracellular OAPs were identified. Their total relative content was ~60% of the total serum protein concentration: ~30% for hemopexin, ~10 and ~12% for proteinase inhibitors and apolipoprotein A (in high-density lipoprotein composition), respectively, 3.6% for albumin and "traces" of intracellular Grb14. According to gene ontology annotations, the main functions of OAPs are associated with protection and transport, and the manifestation of high osmotic activity of OAPs is due to their high negative charge. Comparison of the list of OAPs in albumin-containing pike with the list of OAPs in albumin-free teleost fish indicates their coincidence in all extracellular proteins except albumin. In light of the albumin-free model of capillary exchange, this fact suggests an ordinary, rather than a key role of albumin in the control of osmotic homeostasis inside the body. The multiplicity of OAPs in the blood of teleost fish distinguishes them from mammals, in which serum albumin specializes in the control of capillary fluid exchange.

Full Text

Restricted Access

About the authors

A. M. Andreeva

I. D. Papanin Institute for Biology of Inland Waters RAS

Author for correspondence.
Email: aam@ibiw.ru
Russian Federation, Borok, Yaroslavskaya oblast

Z. M. Bazarova

I. D. Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russian Federation, Borok, Yaroslavskaya oblast

M. A. Konstantinov

V. N. Orekhovich Research Institute of Biomedical Chemistry, RAS

Email: aam@ibiw.ru
Russian Federation, Moscow

I. Y. Toropygin

I. D. Papanin Institute for Biology of Inland Waters RAS; V. N. Orekhovich Research Institute of Biomedical Chemistry, RAS

Email: aam@ibiw.ru
Russian Federation, Borok, Yaroslavskaya oblast; Moscow

R. A. Fedorov

I. D. Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russian Federation, Borok, Yaroslavskaya oblast

D. V. Garina

I. D. Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russian Federation, Borok, Yaroslavskaya oblast

A. S. Vasiliev

I. D. Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russian Federation, Borok, Yaroslavskaya oblast

References

  1. Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5(9): 827–835. https://doi.org/10.1038/1869
  2. Nguyen MK, Kurtz I (2006) Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration. J Appl Physiol 100: 1293–1300. https://doi.org/10.1152/japplphysiol.01274.2005
  3. Minchiotti L, Galliano M, Kragh-Hansen U, Peters TJr (2008) Mutations and polymorphisms of the gene of the major human blood protein, serum albumin. Hum Mutat 29(8): 1007–1016. https://doi.org/10.1002/humu.20754
  4. Levitt D, Levitt M (2016) Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med 9: 229–255. https://doi.org/10.2147/IJGM.S102819
  5. Andreeva AM, Bazarova ZM, Toropygin IYu, Vasiliev AS, Federov RA, Pavlova PA, Garina DV (2023) Serum osmotically active proteins in the Atlantic cod Gadus morhua. J Evol Biochem Physiol 59: 325–336. https://doi.org/10.1134/S0022093023020023
  6. Dziegielewska KM, Evans CA, Fossan G, Lorscheider FL, Malinowska DH, Møllgård K, Reynolds ML, Saunders NR, Wilkinson S (1980) Proteins in cerebrospinal fluid and plasma of fetal sheep during development. J Physiol 300: 441. https://doi.org/10.1113/jphysiol.1980.sp013171
  7. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, Chruszcz M, Minor W (2012) Structural and immunologic characterization of bovine, horse, andrabbit serum albumins. Mol Immunol 52(3–4): 174. https://doi.org/10.1016/j.molimm.2012.05.011
  8. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS (2013) Review: glycation of human serum albumin. Clin Chim Acta 425: 64. https://doi.org/10.1016/j.cca.2013.07.013
  9. Andreeva AM (2020) Structural organization of plasma proteins as a factor of capillary filtration in Pisces. Inland Water Biology 13(4): 664–673. https://doi.org/ 10.1134/S1995082920060036
  10. Nynca J, Arnold G, Fröhlich T, Ciereszko A (2017) Proteomic identification of rainbow trout blood plasma proteins and their relationship to seminal plasma proteins. Proteomics 17(11): 1–15. https://doi.org/10.1002/pmic.201600460
  11. Itzhaki RF, Gill DM (1964) A micro-biuret method for estimatingproteins. Anal Biochem 9: 401–410.
  12. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685. https://doi.org/10.1038/227680a0
  13. Gaal O, Medgyesi GA, Vereczkey L (1980) Electrophoresis in the separation of biological macromolecules. Chichester John Wiley & Sons 83–87.
  14. Babin PJ, Vernier JM (1989) Plasma lipoproteins in fish. J Lipid Res 30: 467–489
  15. Stoletov K, Fang L, Choi SH, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier P, Witztum JL, Klemke RL, Miller YI (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circul Res 104: 952. https://doi.org/10.1161/CIRCRESAHA.108.189803
  16. Andreeva АМ, Vasiliev AS, Toropygin IYu, Garina DV, Lamash NE, Filippova AE (2019) Involvement of apolipoprotein A in maintaining tissue fluid balance in goldfish Carassius auratus. Fish Physiol Biochem 45(5): 1717–1730. https://doi.org/10.1007/s10695-019-00662-1
  17. Byrnes L, Gannon F (1990) Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression. DNA Cell Biol 9(9): 647–655. https://doi.org/10.1089/dna.1990.9.647
  18. Metcalf V, Brennan S, Chambers G, George P (1998) The albumins of Chinook salmon (Oncorhynchus tshawytscha) and brown trout (Salmo trutta) appear to lack a propeptide. Arch Biochem Biophys 350(2): 239–244. https://doi.org/10.1006/abbi.1997.0509
  19. Metcalf VJ, Brennan SO, Chambers GK, George PM (1998) The albumin of the brown trout (Salmo trutta) is a glycoprotein. Biochim Biophys Acta 1386(1): 90–96.
  20. Xu Y, Ding Z (2005) N-terminal sequence and main characteristics of Atlantic salmon (Salmo salar) albumin. Prep Biochem Biotechnol 35(4): 283–290. https://doi.org/10.1080/10826060500218081
  21. Campinho MA, Morgado I, Pinto PI, Silva N, Power DM (2012) The goitrogenic efficiency of thioamides in a marine teleost, sea bream (Sparus auratus). Gen Comp Endocrinol 179(3): 369–375. https://doi.org/10.1016/j.ygcen.2012.09.022
  22. Park SW, Kim K, Kim OK, Ro WB, Lee CM (2023) Evaluation of plasma prealbumin as a novel inflammatory biomarker in dogs: a pilot study. Front Vet Sci 10:1142535
  23. Delanghe JR, Langlois MR (2001) Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin Chim Acta 312(1-2): 13–23. https://doi.org/10.1016/s0009-8981(01)00586-1
  24. Kueppers F (1971) Alpha-1-antitrypsin: physiology, genetics and pathology. Humangenetik 11(3): 177–189. https://doi.org/ 10.1007/BF00274738
  25. Dellière S, Cynober L (2017) Is transthyretin a good marker of nutritional status? Clin Nutr 36(2): 364–370. https://doi.org/10.1016/j.clnu.2016.06.004
  26. Jolley CD, Woollett LA, Turley SD, Dietschy JM (1998) Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration. J Lipid Res 39(11): 2143–2149.
  27. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A (2004) The human plasma proteome: a nonredundant list developedby combination of four separate sources. Mol Cell Proteomics 3: 311. https://doi.org/10.1074/mcp.M300127-MCP200
  28. Putnam FW (1975–1987) in: The Plasma Proteins Structure, Function, and Genetic Control (Putnam, F. W., ed). New York: Academic Press, 1–55.
  29. Sha Z, Xu P, Takano T, Liu H, Terhune J, Liu Z (2008) The warm temperature acclimation protein Wap65 as an immune response gene: Its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45(5): 1458–1469. https://doi.org/10.1016/j.molimm.2007.08.012
  30. Sarropoulou E, Fernandes JM, Mitter K, Magoulas A, Mulero V, Sepulcre MP, Figueras A, Novoa B, Kotoulas G (2010) Evolution of a multifunctional gene: The warm temperature acclimation protein Wap65 in the European seabass Dicentrarchus labrax. Mol Phylogenet Evol 55(2): 640–649. https://doi.org/10.1016/j.ympev.2009.10.001
  31. Liu F, Su B, Gao C, Zhou S, Song L, Tan F, Dong X, Ren Y, Li C (2016) Identification and expression analysis of TLR2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish Shellfish Immunol 55: 654e661. https://doi.org/10.1016/j.fsi.2016.06.047
  32. Li C, Gao C, Fu Q, Su B, Chen J (2017) Identification and expression analysis of fetuin B (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge. Fish Shellfish Immunol 68: 386–394. https://doi.org/10.1016/j.fsi.2017.07.032
  33. Tseng YC, Hwang PP (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol Part C 148: 419–429. https://doi.org/10.1016/j.cbpc.2008.04.009
  34. Andreeva AM (2019) The strategies of organization of the fish plasma proteome: with and without albumin. Russ J Mar Biol 45(4): 263–274. https://doi.org/10.1134/S1063074019040023
  35. Schulz GE, Schirmer RH (1979) Principles of Protein Structure. New York: Springer-Verlag. 314 p.
  36. Kornmueller K, Vidakovic I, Prassl R (2019) Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 24(15): 2829(1–28). https://doi.org/10.3390/molecules24152829.
  37. Черний ВИ (2017) Роль и место альбумина в современной инфузионно-трансфузионной терапии. Медицина неотложных состояний 1(80): 23–31. https://doi.org/10.22141/2224-0586.1.80.2017.94448
  38. Andreeva АМ, Martemyanov V, Vasiliev AS et al. (2022) Goldfish as a model for studying the effect of hypernatremia on blood plasma lipoproteins. Bratisl Lek Listy 123(3): 172–177. https://doi.org/10.4149/BLL_2022_028
  39. Andreeva AM, Lamash N, Martemyanov VI, Vasiliev AS, Toropygin IY, Garina DV (2024) High-density lipoprotein remodeling affects the osmotic properties of plasma in goldfish under critical salinity. J Fish Biol 104(3): 564–575. https://doi.org/10.1111/jfb.15607

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electrophoresis of blood serum of the pike Esox lucius: (a) — disk-PAGE; (b) and (c) — 5–40%-PAGE and SDS-PAGE, respectively (fragments of electropherograms containing proteins with high osmotic activity OAPs are shown). The dotted line (a) highlights the region of the OAP fraction. HSA — human serum albumin, the arrow indicates the monomeric form of the protein; Tf — transferrin; 45, 60, 75, 80 — Mr values ​​in kDa. The Mr (kDa) scale is given to the right of the electropherograms (b, c).

Download (114KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».