Activity of digestive enzymes in the small intestine Black-legged kittiwakes Rissa tridactyla, nesting on the coast of the Barents Sea
- Authors: Kuklina M.M.1, Kuklin V.V.1
-
Affiliations:
- Murmansk Marine Biological Institute of the Russian Academia Science
- Issue: Vol 61, No 1 (2025)
- Pages: 41-50
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0044-4529/article/view/289322
- DOI: https://doi.org/10.31857/S0044452925010059
- EDN: https://elibrary.ru/CGTMTQ
- ID: 289322
Cite item
Abstract
The black-legged kittiwakes Rissa tridactyla nesting on the Murmansk coast of the Barents Sea have been studied. The activity of digestive enzymes (aminopeptidase N, maltase and sucrase) in the mucosa of the small intestine of birds was measured. The composition of the feeds of the black-legged kittiwakes was determined by the contents of their stomachs. Capelin, juvenile cod and crustaceans made up their diet. Capelin and crustaceans have been recorded in the diet of females, while males mainly have cod. Comparative analysis showed that the values of digestive enzyme activity had no significant differences in females and males. An increase in the activity of sucrase in the mucosa of the small intestine was recorded in birds in whose stomachs otoliths of cod, capelin and crustacean remains were found, compared with the activity of digestive enzymes in birds with empty stomachs. The species composition of helminths parasitizing in the small intestine of black-legged kittiwakes has been established, and their invasion rates have been calculated. The cestodes Alcataenia larina and Tetrabothrius erostris have been recorded in the proximal section of the small intestine of birds. In places of localization A. larina increased the activity of aminopeptidase N and decreased the activity of maltase relative to the indicators of uninfected black-legged kittiwakes.
Full Text

About the authors
M. M. Kuklina
Murmansk Marine Biological Institute of the Russian Academia Science
Author for correspondence.
Email: MM_Kuklina@mail.ru
Russian Federation, Murmansk
V. V. Kuklin
Murmansk Marine Biological Institute of the Russian Academia Science
Email: MM_Kuklina@mail.ru
Russian Federation, Murmansk
References
- Белопольский ЛО (1957) Экология морских колониальных птиц Баренцева моря. М.; Л.: Изд-во РАН. 460 с.
- Krasnov YV, Barrett RT, Nikolaeva NG (2007) Status of black-legged kittiwakes (Rissa tridactyla), common guillemots (Uria aalge) and Brünnoch’s guillemots (U. lomvia) in Murman, north-west Russia, and Varanger, north-east Norw. Polar Research 26: 113–117. https://doi.org/10.1111/j.1751-8369.2007.00015.x.
- Краснов ЮВ, Ежов АВ (2020) Состояние популяций морских птиц и факторы, определяющие их развитие в Баренцевом море. Труды Кольского научного центра РАН. Океанология 7 Апатиты: 225–244. https://doi.org/10.37614/2307-5252.2020.11.4.011
- Anker-Nilssen T, Bakken V, Strøm H, Golovkin AN, Bianki VV, Tatarinkova IP (2003) The status of marine birds breeding in the Barents Sea Region. Tromso: Norsk Polarinstitutt. 216 p. https://doi.org/10.2307/1522196
- Golet GH, Irons DB (1999) Raising young reduces body condition and fat stores in black-legged kittiwakes. Oecologia 120: 530–538. https://doi.org/10.1007/s004420050887
- Langseth I, Moe B, Fyhn M, Gabrielsen GW, Bech C (2000). Flexibility of Basal Metabolic Rate in Arctic breeding Kittiwakes (Rissa tridactyla). In: Heldmaier, G., Klingenspor, M. (eds) Life in the Cold. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04162-8_48
- Fyhn M, Gabrielsen GW, Nordøy ES, Moe B, Langseth I, Bech C (2001) Individual variation in field metabolic rate of kittiwakes (Rissa tridactyla) during the chick-rearing period. Physiol Biochem Zool. 74: 343–355. https://doi.org/10.1086/320419
- Bech C, Langseth I, Moe B, Fyhn M, Gabrielsen GW (2002) The energy economy of the arctic-breeding Kittiwake (Rissa tridactyla): a review. Comp Biochem. Physiol. A Mol. Integr. Physiol. 133: 765–770. https://doi.org/10.1016/s1095-6433(02)00153-8
- Moe B, Langseth I, Fyhn M, Gabrielsen GW, Bech C (2002) Changes in Body Condition in Breeding Kittiwakes Rissa tridactyla. Journal of Avian Biology 33: 225–234. http://www.jstor.org/stable/3677589
- Leclaire S, Helfenstein F, Degeorges A, Wagner RH, Danchin É (2010) Family size and sex-specific parental effort in black-legged kittiwakes. Behaviour 147: 1841–1862. http://www.jstor.org/stable/25799789
- Jacobs SR, Edwards DB, Ringrose J, Elliott KH, Weber JM, Gaston AJ (2011) Changes in body composition during breeding: Reproductive strategies of three species of seabirds under poor environmental conditions. Comp Biochem Physiol B Biochem Mol Biol 158: 77–82. https://doi.org/10.1016/j.cbpb.2010.09.011
- Краснов ЮВ, Николаева НГ (1998) Итоги комплексного изучения биологии моевки в Баренцевом море. В кн. Биология и океанография Карского и Баренцева морей (по трассе Севморпути). Апатиты: Изд-во КНЦ РАН: 180–260.
- Kuklina MM, Kuklin VV (2011) Peculiarities of protein hydrolysis on the digestive transport surfaces of the intestine of the kittiwake Rissa tridactyla and Alcataenia larina (Cestoda, Dilepididae) parasitizing it. Biology Bulletin 38: 470–475. 10.1134/S1062359011050098' target='_blank'>https://doi: 10.1134/S1062359011050098
- Kuklina MM, Kuklin VV (2018) Effect of Cestodal Infestation on the Distribution Pattern of Digestive Enzyme Activities along the Small Intestine of the Kittiwake (Rissa tridactyla). J Evol Biochem Physiol 54: 292–299. 10.1134/S0022093018040051' target='_blank'>https://doi: 10.1134/S0022093018040051
- Kuklina MM, Kuklin VV (2018) Hematological and Biochemical Parameters of the Helminth-Infested Kittiwake Rissa tridactyla. Biol Bull Russ Acad Sci 45: 564–569. https://doi.org/10.1134/S1062359018050102
- Campana SE (2004) Photographic atlas of fish otoliths of the Northwest Atlantic oceans. National Research Council Canada, Ottawa. 284 p.
- Темирова СИ, Скрябин АС (1978) Основы цестодологии. Тетработриаты и мезоцистоидаты–ленточные черви гельминтов птиц и млекопитающих. М.: Изд-во Наука. 231 с.
- Ryzhikov KM, Rusavy B, Khokhlova IG, Tolkatchova LM, Kornyuchin VV (1985) Helminths of Fish-Eating Birds of the Palaearctic Region II. Cestoda and Acanthocephales. Academia. Praha. 412 p.
- Ramirez-Otarola N, Narváez C, Sabat P (2011) Membrane-bound intestinal enzymes of passerine birds; dietary and phylogenetic correlates. Comparative Physiology B 181: 817–827. https://doi.org/10.1007/s00360-011-0557-3
- Dahlqvist A (1968) Assay of intestinal disaccharidases. Anal Biochem 22: 99–107. https://doi.org/10.1016/0003-2697(68)90263-7
- Martínez del Rio C (1990) Dietary, phylogenetic, and ecological correlates of intestinal sucrose and maltase activity in birds. Physiological Zoology 63: 987–1011. https://doi.org/0031-935X/90/6305-89107
- Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6: 24–27. https://doi.org/10.1177/000456326900600108
- Краснов ЮВ, Матишов ГГ, Галактионов КВ, Савинова ТН (1995) Морские колониальные птицы Мурмана. Спб.: Наука. 224 с.
- Barrett RT, Krasnov YV (1996) Recent responses to changes in stocks of prey species by seabirds breeding in the southern Barents Sea. ICES J Marine Sci 53: 713–722. https://doi.org/10.1006/jmsc.1996.0090
- Lewis S, Wanless S, Wright H, Harris M, Bull J, Elston DA (2001) Diet and Breeding Performance of Black-Legged Kittiwakes Rissa tridactyla at a North Sea Colony. Marine Ecology Progress Series 221: 277–284. https://doi.org/10.3354/meps221277
- Suryan RM, Irons DB, Benson J (2000) Prey switching and variable foraging strategies of black-legged kittiwakes and the effect on reproductive success. The Condor 102: 374–384. https://doi.org/10.1093/condor/102.2.374
- Karasov WH, Diamond JM (1988) Interplay between physiology and ecology in digestion. BioScience 38: 602–611. https://doi.org/10.2307/1310825
- Afik DL, Caviedes-Vidal E, Martínez del Rio C, Karasov WH (1995) Dietary modulation of intestinal hydrolytic enzymes in yellow-rumped warblers. American Journal of physiology 269: 420–423. https://doi.org./10.1152/ajpregu.1995.269.2.R413
- Caviedes-Vidal E, Afik D, Martinez del Rio C, Karasov WH (2000) Dietary modulation of intestinal enzymes of the house sparrow (Passer domesticus): testing an adaptive hypothesis. Comparative Biochemistry and Physiology, A 125: 11–24. https://doi.org/10.1016/S1095-6433(99)00163-4
- Sabat P (2000) Intestinal disaccharidases and aminopeptidase-N in two species of Cinclodes (Passerine: Furnaridae). Revista Chilena de Historia Natural 73: 345–350. http://dx.doi.org/10.4067/S0716-078X2000000200009.
- Kohl KD, Ciminari ME, Chedlack JG, Leafloor JO, Karasov WH, McWilliams SR, Caviedes-Vidal E (2017) Modulation of digestive enzyme activities in the avian digestive tract in relation to diet compisition and quality. J. Comp. Physiol. B 187: 339–351. https://doi.org/10.1007/s00360-016-1037-6
- Griego M, DeSimone J, Ramirez MG, Gerson AR (2021) Aminopeptidase-N modulation assists lean mass anabolism during refuelling in the whitethroated sparrow. Proc R Soc B 288: 20202348. https://doi.org/10.1098/rspb.2020.2348
- Lee KA, Karasov WH, Caviedes-Vidal E (2002) Digestive response to restricted feeding in migratory yellow-rumped warblers. Physiol Biochem Zool 75: 314–323. https://doi.org/10.1086/342003
- Fassbinder-Orth C, Karasov WH (2006) Effects of feed restriction and realimentation on digestive and immune function in the leghorn chick. Poult. Sci. 85: 1449–1456. https://doi.org/10.1093/ps/85.8.1449
- Chediack JG, Funes SC, Cid FD, Filippa V, Caviedes-Vidal E (2012) Effect of fasting on the structure and function of the gastrointestinal tract of house sparrows (Passer domesticus). Comparative Biochemistry and Physiology Part A. Molecular & Integrative Physiology 163: 103–110. https:// doi.org/10.1016/j.cbpa.2012.05.189
- Извекова ГИ, Куклина ММ (2014) Заражение цестодами и активность пищеварительных гидролаз позвоночных животных. Успехи современной биологии 134: 304–315. [Izvekova GI, Kuklina MM (2014) Infection by cestodes and activity of digestive enzymes in invertebrate hosts. Biol Bull Rev 134: 304–315. (In Russ)].
- Izvekova GI, Solovyev MM (2016) Characteristics of the effect of cestodes parasitizing the fish intestine on the activity of the host proteinases. Biol Bull 43: 146–151. https://doi.org/10.1134/S1062359016010076
- Kuklina MM, Kuklin VV (2016a) The activities of digestive enzymes as a determinant factor in the localization of Tetrabothrius erostris (Loennberg) (Cestoda: Tetrabothriidae) in the intestine of the herring gull Larus argentatus Pontoppidan. Inland Water Biology 9: 189–195. https://doi.org/10.1134/S1995082916010107
- Kuklina MM, Kuklin VV (2016b) Diphyllobothrium dendriticum (Cestoda: Diphyllobothriidae) in the intestinal tract of the herring gull Larus argentatus: Localization and trophic parameters. Biol Bull 43: 329–334. https://doi.org/10.1134/S1062359016040063
- Куклина ММ, Куклин ВВ (2017) Wardium cirrosa (Cestoda: Aploparaksidae): локализация в кишечнике серебристой чайки и влияние на пищеварительную активность хозяина. Паразитология 51: 213–223.
- Luan Y, Xu W (2007) The structure and main functions of aminopeptidase N. Current medicinal chemistry 14: 639–647. https://doi.org/0929-8673/07 $50.00+.00
- Dalton JP, Skelly P, Halton DW (2004) Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can J Zool 82: 211–232. https://doi.org/10.1139/z03-213.
Supplementary files
