Brain monoamines in early ontogenesis and selection effects in rats with behavioral stereotypy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The rat strain with hereditary stereotypy in the form of pendulum movements (PM) can be considered as a new model of audiogenic epilepsy. The purpose of this study was to investigate levels of brain monoamines (MA) at the early stages of postnatal ontogenesis in PM rats, as well as to assess the severity of PM, audiogenic epilepsy and aggressiveness in adult PM rats of different generations of selection. The effects of selection in adult rats with PM in 52–54 generations of selection included an increase in the amplitude of PM, an increase in the frequency and intensity of clonic-tonic seizures, an increase in the duration of postictal catalepsy and increased aggressiveness. The higher level of serotonin (5HT) in the brainstem was shown in PM pups compared to Wistar pups at the age of 14 days. The higher level of the serotonin metabolite, 5-hydroxyindoleacetic acid (5HIAA), was found in the cortex of 14-day-old PM pups. Higher levels of dopamine metabolites DOPAC and homovanillic acid (HVA) were found in the cortex of 14-day-old PM rat pups. But the level of HVA in the cortex was lower in 10-day-old PM pups than it in Wistar pups. Higher levels of dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) were shown in the brainstem of PM pups compared to Wistar pups at the specified age. The reduced dopamine turnover was shown in the brainstem of 14-day-old PM pups in compare with Wistar pups. This data indicate changes in the levels of MA and their metabolites in the central monoaminergic system in early postnatal ontogenesis in PM rats, which may contribute to the formation of behavioral and physiological abnormalities in adult PM rats. The growth of the PM amplitude and the increased severity of audiogenic seizures, observed during selection, confirms the connection between catatonic and neurological symptoms in this model — rats with pendulum-like hyperkinesis.

Full Text

Restricted Access

About the authors

T. A. Alekhina

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: alek@bionet.nsc.ru
Russian Federation, Novosibirsk

O. I. Prokudina

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: alek@bionet.nsc.ru
Russian Federation, Novosibirsk

V. S. Plekanchuk

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: alek@bionet.nsc.ru
Russian Federation, Novosibirsk

R. V. Kozhemyakina

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: alek@bionet.nsc.ru
Russian Federation, Novosibirsk

M. A. Ryazanova

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: alek@bionet.nsc.ru
Russian Federation, Novosibirsk

References

  1. Колпаков ВГ (1990) Кататония у животных. Новосибирск: Наука.
  2. Барыкина НН, Чугуй ВФ, Прокудина ОИ, Плюснина ИЗ, Колпаков ВГ (2007) Подтверждение положительной генетической взаимосвязи маятникообразных движений с аудиогенной эпилепсией, каталепсией и “нервностью”. Генетика 43(7): 987–993.
  3. Беляев ДК, Бородин ПМ (1982) Влияние стресса на наследственную изменчивость и его роль в эволюции. Эволюц генетика 35–59.
  4. Алехина ТА, Прокудина ОИ, Рязанова МА, Уколова ТН, Барыкина НН, Колпаков ВГ (2007) Проявление типологических свойств поведения у линий крыс, селектированных на усиление и отсутствие маятникообразных движений. Связь с моноаминами мозга. Журн высш нерв деят 57(3): 336–343.
  5. Alekhina TA, Gilinsky MA, Kolpakov VG (1994) Catecholamines level in the brain of rats with a genetic predisposition to catatonia. Biogenic Amines 10(5): 443–449.
  6. Алексеев ВВ, Кошелев ВБ, Ковалев ГИ, Полетаева ИИ (2003) Влияние неонатальных воздействий на болевую и аудиогенную чувствительность и на содержание моноаминов в мозгу взрослых крыс Онтогенез 34(6): 484–471.
  7. Igonina TN, Alekhina TA, Palchikova NA, Prokudina OI (2016) Prodromal signs of catatonia are associated with hereditary dysfunction of body systems in rat pups. J Experim Integr Med 6(3): 99–108. https://doi.org/10.5455/jeim.270816.or.157
  8. Fedirchuk B, Day Y (2004) Monoamines increase the excitability of spinal neurons in the neonatal rat by hyperpolarizing the threshold for action potential production. J Physiol 557(2): 355–361.
  9. Cazalets JR, Border M, Clarac F (1995) Localization and organization of the central pattern generator for hind limb locomotion in newborn rat. J Neurosci 15(7): 4943–4951.
  10. Alekhina TA, Plekanchuk VS, Osadchuk LV (2021) Prodromal characteristics of epilepsy in rats with pendulum-like movements. J evol biochem physiol 53(3): 240–249. https://doi.org/10.1134/S0022093021030042
  11. Plyusnina IZ, Oskina IN, Tibeikina MA, Popova NK (2009) Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human. Behav Genet 39(2): 202–212. https://doi.org/10.1007/s10519-008-9248-6
  12. Clarac F, Brocard F, Vinay L (2004) The maturation of locomotor networks. Prog brain res 143: 57–66. https://doi.org/10.1016/S0079-6123(03)43006-9
  13. Schark C (2008) The development of locomotor kinematics in neonatal rats: an agent-based modeling analysis in group and individual contexts. J theor boil 254: 826–842. https://doi.org/10.1016/j.jtbi.2008.07.024
  14. Федотова ИБ, Сурина НМ, Маликова ЛА, Раевский КС, Полетаева ИИ (2008) Исследование изменений мышечного тонуса (каталепсии), наступающих у крыс после аудиогенного судорожного припадка. Журн высш нерв деят 58(5): 620–627.
  15. Alekhina TA, Kozhemyakina RV (2019) Modeling of Focal Seizures with Automatisms in Rats with Pendulum Movements Bull Exp Biol Med 168(2): 300–303. https://doi.org/10.1007/s10517-019-04695-7
  16. Adachi N, Ito M (2022) Epilepsy in patients with schizophrenia: Pathophysiology and basic treatments. Epilepsy Behav 27: 108520. https://doi.org/10.1016/j.yebeh.2021.108520
  17. Cascella NG, Schretlen DJ, Sawa A (2009) Schizophrenia and epilepsy: is there a shared susceptibility? Neurosci Res 63(4): 227–235. https://doi.org/10.1016/j.neures.2009.01.002
  18. Kam H, Jeong H (2020) Pharmacogenomic Biomarkers and Their Applications in Psychiatry. Genes (Basel) 11(12): 1445. https://doi.org/10.3390/genes11121445
  19. Moffat JJ, Ka M, Jung EM, Rim WY (2015) Genes and brain malformations associated with abnormal neuron positioning. Molecular brain 8: 1–12. https://doi.org/10.1186/s13041-015-0164-4
  20. van der Veen S, Tse GTW, Ferretti A, Garone G, Post B, Specchio N, Fung VSC, Trivisano M, Scheffer IE (2023) Movement Disorders in Patients with Genetic Developmental and Epileptic Encephalopathies. Neurology 101: e1884–e1892. https://doi.org/10.1212/WNL.0000000000207808
  21. Барыкина НН, Чугуй ВФ, Алехина ТА, Рязанова МА, Уколова ТН, Сахаров ДГ, Колпаков ВГ (2009) Обучение крыс, предрасположенным к кататоническим состояниям, в водном тесте Морриса. Журн высш нерв деят 59(6): 728–735.
  22. Plekanchuk VS, Prokudina OI, Ryazanova MA (2022) Social behavior and spatial orientation in rat strains with genetic predisposition to catatonia (GC) and stereotypes (PM). Vavilov J Genet Breed 26: 281–289. https://doi.org/10.18699/VJGB-22-35
  23. Levitin H, Hague DW, Ballantyne KC, Selmic LE (2019) Behavioral Changes in Dogs With Idiopathic Epilepsy Compared to Other Medical Populations. Front Vet Sci 6:. https://doi.org/10.3389/fvets.2019.00396
  24. Watson F, Packer RMA, Rusbridge C, Volk HA (2020) Behavioural changes in dogs with idiopathic epilepsy. Veterinary Record 186: 93. https://doi.org/10.1136/vr.105222
  25. Winter J, Packer RMA, Volk HA (2018) Preliminary assessment of cognitive impairments in canine idiopathic epilepsy. Veterinary Recordy 182: 633. https://doi.org/10.1136/vr.104603
  26. Hobbs SL, Law TH, Volk HA, Younis C, Casey RA, Packer RMA (2020) Impact of canine epilepsy on judgement and attention biases. Sci Rep 10: 17719. https://doi.org/10.1038/s41598-020-74777-4
  27. Brodie MJ, Besag F, Ettinger AB, Mula M, Gobbi G, Comai S, Aldenkamp AP, Steinhoff BJ (2016) Epilepsy, Antiepileptic Drugs, and Aggression: An Evidence-Based Review. Pharmacol Rev 68(3): 563–602. https://doi.org/10.1124/pr.115.012021
  28. Seo JG, Kim JM, Park SP (2015) Perceived stigma is a clinical factor for interictal aggression in people with epilepsy. Seizure 26: 26–31. https://doi.org/10.1016/j.seizure.2015.01.011
  29. Louw D, Sutherland GR, Glavin GB, Girvin J (1989) A Study of Monoamine Metabolism in Human Epilepsy. Canadian Journal of Neurological Sciences. Journal Canadien des Sciences Neurologiques 16(4): 394–397. https://doi.org/10.1017/S0317167100029449
  30. Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G (2016) Monoaminergic mechanisms in epilepsy may offer innovative therapeutic opportunity for monoaminergic multi-target drugs. Frontiers in neuroscience 10: 492. https://doi.org/10.3389/fnins.2016.00492
  31. Juliá-Palacios N, Molina-Anguita C, Bondarenko MS, Cortès-Saladelafont E, Aparicio J, Cuadras D, Horvath G, Fons C, Artuch R, García-Cazorla À (2022) Monoamine neurotransmitters in early epileptic encephalopathies: New insights into pathophysiology and therapy. https://doi.org/10.1111/dmcn.15140
  32. Lu X, Sharkey L, Bartfai T (2007) The brain galanin receptors: targets for novel antidepressant drugs CNS Neurol Disord Drug Targets 6(3): 183–192. https://doi.org/10.2174/187152707780619335
  33. Kobayashi Y, Segi-Nishida E (2019) Search for factors contributing to the electroconvulsive treatment model using adrenocortocotrophic hormone-treated mice Pharmacol Biochem Behav 186: 172767. https://doi.org/10.1016/j.pbb.2019.172767
  34. Shaywitz BA, Yager RD, Gordon JW (1978) Ontogeny of brain catecholamine turnover and susceptibility to audiogenic seizures in DBA/2J mice. Dev Psychobiol 11(3): 243–250. https://doi.org/10.1002/dev.420110308
  35. Schoenecker B, Heller KE (2001) The involvement of dopamine (DA) and serotonin (5-HT) in stress-induced stereotypies in bank voles (Clethrionomys glareolus). Appl Anim Behav Sci 27. 73(4): 311–319. https://doi.org/10.1016/s0168-1591(01)00143-5
  36. Попова НК (2017) Доместикация и мозг: сорок лет спустя. Вавиловский журнал генетики и селекции 21(4): 414–420. https://doi.org/10.18699/VJ17.259
  37. Brady S, Siegel G, Wayne R, Albers (2012) Basic Neurochemistry Principles of Molecular, Cellular, and Medical Neurobiology. Eighth Edition. Oxford.
  38. Колпаков ВГ, Алехина ТА, Барыкина НН, Чугуй ВФ, Попова НК (2000) Некоторые физиологические проявления действия гена, контролирующего предрасположенность к маятникообразным движениям у грызунов. Росс Физиол журн 86(1): 33–40.
  39. Litvinova SA, Voronina TA, Kudrin VS, Narkevich VB, Surina NM, Poletaeva II, Fedotova IB (2023) The Role of Brain Monoamines in the Formation of Audiogenic Myoclonic Seizures in Krushinsky–Molodkina Rats. Neurochem J 17: 84–90. https://doi.org/10.1134/S1819712423010130
  40. Сергиенко НГ, Логинова ГА (1983) Изучение роли медиаторов в формировании судорожной готовности, содержание биогенных аминов в головном мозге крыс с различной предрасположенностью к аудиогенным судорогам Вопросы мед химии 29(6): 21–24.
  41. Yan QS, Jobe PC, Daily JW (1993) Thalamic deficiency in norepinephrine release detected via intracerebral microdialysis: a synaptic determinant of seizure predisposition in the genetically epilepsy-prone rat Epilepsy Res 14(3): 229–236.
  42. Szot P, Reigel CE, White SS, Veith RC (1996) Alteration in mRNA expression of systems that regulate neurotransmitter synaptic content in seizure-naïve genetically epilepsy-prone rat (GEPR): transporter proteins and rate-limiting synthesizing enzymes for norepinephrine, dopamine and serotonin Brain Res Mol Brain Res 43(1-2): 233–245. https://doi.org/10.1016/s0169-328x(96)00184-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The proportion of rats with audiogenic seizures (abortive and clonic-tonic) in different generations of selection of the MD line.

Download (58KB)
3. Fig. 2. Brain monoamine levels in MD and Wistar rats in early ontogenesis. ** — p < 0.01, *** — p < 0.001 MD vs. Wistar. Data were subjected to two-way ANOVA with post hoc HSD criterion. NA — norepinephrine, DA — dopamine, 5HT — serotonin.

Download (346KB)
4. Fig. 3. Levels of brain monoamine metabolites in MD and Wistar rats in early ontogenesis. * — p < 0.05, *** — p < 0.001 MD vs. Wistar. Data were subjected to two-way ANOVA with post hoc HSD criterion. DOPAC — dihydroxyphenylacetic acid, HVA — homovanillic acid, 5HIAA — 5-hydroxyindoleacetic acid.

Download (350KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».