Embryo-conditioned media affect the functional state of endothelial cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, the main method of selecting high-quality embryos in assisted reproduction is based on morphological evaluation. In order to standardize the selection process and increase transfer efficiency, it is necessary to develop other objective, non-invasive methods. One potential approach is the assessment of soluble factors in media samples collected during embryo incubation. The aim of the study was to determine the levels of IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IP-10, G-CSF, and GM-CSF in embryo-conditioned media, as well as assess the effect of these media on the functional activity of endothelial cells. We did not find stable levels of these cytokines in the embryo-conditioned medium after 2 days of incubation. Nevertheless, the media obtained from embryos of quality A and AB, consisting of 3 or 4 cells, had an effect on the proliferation and migration of endothelial cells. In the future, it will be necessary to identify the nature of active molecules present in embryo-conditioned media in order to determine their potential as markers for selecting the best embryos.

Full Text

Restricted Access

About the authors

E. V. Tyshchuk

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

M. S. Zementova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

E. M. Komarova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

E. A. Lesik

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

K. V. Ob’edkova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

O. N. Bespalova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

S. A. Selkov

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

D. I. Sokolov

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: lisatyshchuk@yandex.ru
Russian Federation, Saint Petersburg

References

  1. Njagi P, Groot W, Arsenijevic J, Dyer S, Mburu G, Kiarie J (2023) Financial costs of assisted reproductive technology for patients in low- and middle-income countries: a systematic review. Hum Reprod Open 2023: hoad007. https://doi.org/10.1093/hropen/hoad007
  2. Armstrong S, Bhide P, Jordan V, Pacey A, Marjoribanks J, Farquhar C (2019) Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev 5: CD011320. https://doi.org/10.1002/14651858.CD011320.pub4
  3. Sun Y, Cui L, Lu Y, Tan J, Dong X, Ni T, Yan J, Guan Y, Hao G, Liu JY, Zhang B, Wei D, Hong Y, He Y, Qi J, Xu B, Lu J, Zhang Q, Zhao S, Ji X, Du X, Zhang J, Liu J, Wang J, Huang Y, Huang D, Du Y, Vankelecom H, Zhang H, Chen ZJ (2023) Prednisone vs Placebo and Live Birth in Patients With Recurrent Implantation Failure Undergoing In Vitro Fertilization: A Randomized Clinical Trial. JAMA 329: 1460–1468. https://doi.org/10.1001/jama.2023.5302
  4. Alegre L, Del Gallego R, Arrones S, Hernandez P, Munoz M, Meseguer M (2019) Novel noninvasive embryo selection algorithm combining time-lapse morphokinetics and oxidative status of the spent embryo culture medium. Fertil Steril 111: 918–927 e3. https://doi.org/10.1016/j.fertnstert.2019.01.022
  5. Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C (2019) Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci U S A 116: 14105–14112. https://doi.org/10.1073/pnas.1907472116
  6. Kaser DJ, Farland LV, Missmer SA, Racowsky C (2017) Prospective study of automated versus manual annotation of early time-lapse markers in the human preimplantation embryo. Hum Reprod 32: 1604–1611. https://doi.org/10.1093/humrep/dex229
  7. Hernandez-Vargas P, Munoz M, Dominguez F (2020) Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update 26: 264–301. https://doi.org/10.1093/humupd/dmz042
  8. Austgulen R, Arntzen KJ, Vatten LJ, Kahn J, Sunde A (1995) Detection of cytokines (interleukin-1, interleukin-6, transforming growth factor-beta) and soluble tumour necrosis factor receptors in embryo culture fluids during in-vitro fertilization. Hum Reprod 10: 171–176. https://doi.org/10.1093/humrep/10.1.171
  9. Simon C, Moreno C, Remohi J, Pellicer A (1998) Cytokines and embryo implantation. J Reprod Immunol 39: 117-31. https://doi.org/10.1016/s0165-0378(98)00017-5
  10. Zolti M, Ben-Rafael Z, Meirom R, Shemesh M, Bider D, Mashiach S, Apte RN (1991) Cytokine involvement in oocytes and early embryos. Fertil Steril 56: 265–272. https://doi.org/10.1016/s0015-0282(16)54483-5
  11. Zhong H, Sun Q, Chen P, Xiong F, Li G, Wan C, Yao Z, Zeng Y (2020) Detection of IL-6, IL-10, and TNF-alpha level in human single-blastocyst conditioned medium using ultrasensitive Single Molecule Array platform and its relationship with embryo quality and implantation: a pilot study. J Assist Reprod Genet 37: 1695–1702. https://doi.org/10.1007/s10815-020-01805-7
  12. Zollner U, Bischofs S, Lalic I, Zollner K-P (2012) LIF and TNF alpha concentrations in embryo culture media are predictive for embryo implantation in IVF. Asian Pacific Journal of Reproduction 1: 277–282. https://doi.org/10.1016/S2305-0500(13)60092-5
  13. Dalton CF, Laird SM, Estdale SE, Saravelos HG, Li TC (1998) Endometrial protein PP14 and CA-125 in recurrent miscarriage patients; correlation with pregnancy outcome. Hum Reprod 13: 3197–3202. https://doi.org/10.1093/humrep/13.11.3197
  14. Bastu E, Mutlu MF, Yasa C, Dural O, Nehir Aytan A, Celik C, Buyru F, Yeh J (2015) Role of Mucin 1 and Glycodelin A in recurrent implantation failure. Fertil Steril 103: 1059-1064 e2. https://doi.org/10.1016/j.fertnstert.2015.01.025
  15. Yao K, Sun Y, Ye X, Wu Y (2023) Interferon-lambda contributes to endometrial receptivity. Reproduction 165: 569–582. https://doi.org/10.1530/REP-22-0463
  16. Wei W, Wang N, Zhu Y, Liao M, Wang B, Du T, Zhang J, Mao X (2023) GM-CSF improves endometrial receptivity in a thin endometrium rat model by upregulating HOXA10. Mol Hum Reprod 30. https://doi.org/10.1093/molehr/gaad042
  17. Lv J, Shan X, Yang H, Wen Y, Zhang X, Chen H, Li H, Tian D, Wang CC, Zhang R, Li TC, Zhang X, Zhao X, Lu Y, Qin L, Zhu M, Xu W (2022) Single Cell Proteomics Profiling Reveals That Embryo-Secreted TNF-alpha Plays a Critical Role During Embryo Implantation to the Endometrium. Reprod Sci 29: 1608–1617. https://doi.org/10.1007/s43032-021-00833-7
  18. Aplin JD, Ruane PT (2017) Embryo-epithelium interactions during implantation at a glance. J Cell Sci 130: 15–22. https://doi.org/10.1242/jcs.175943
  19. Von Woon E, Greer O, Shah N, Nikolaou D, Johnson M, Male V (2022) Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum Reprod Update 28: 548–582. https://doi.org/10.1093/humupd/dmac006
  20. Yang X, Tian Y, Zheng L, Luu T, Kwak-Kim J (2022) The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int J Mol Sci 24. https://doi.org/10.3390/ijms24010132
  21. Zhang X, Wei H (2021) Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications. Front Immunol 12: 728291. https://doi.org/10.3389/fimmu.2021.728291
  22. Chen X, Man GCW, Liu Y, Wu F, Huang J, Li TC, Wang CC (2017) Physiological and pathological angiogenesis in endometrium at the time of embryo implantation. Am J Reprod Immunol 78. https://doi.org/10.1111/aji.12693
  23. Chen JX, Chen Y, DeBusk L, Lin W, Lin PC (2004) Dual functional roles of Tie-2/angiopoietin in TNF-alpha-mediated angiogenesis. Am J Physiol Heart Circ Physiol 287: H187-95. https://doi.org/10.1152/ajpheart.01058.2003
  24. Johnson KE, Wilgus TA (2014) Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle) 3: 647–661. https://doi.org/10.1089/wound.2013.0517
  25. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12: 551–564. https://doi.org/10.1038/nrm3176
  26. Tao J, Tamis R, Fink K, Williams B, Nelson-White T, Craig R (2002) The neglected morula/compact stage embryo transfer. Hum Reprod 17: 1513–1518. https://doi.org/10.1093/humrep/17.6.1513
  27. Gardner DK, Schoolcraft WB (1999) Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol 11: 307–311. https://doi.org/10.1097/00001703-199906000-00013
  28. Марков АС, МКЛ, Соколов ДИ, Сельков СА, MARKMIGRATION. 2019: Россия.
  29. Acuna-Gonzalez RJ, Olvera-Valencia M, Lopez-Canales JS, Lozano-Cuenca J, Osorio-Caballero M, Flores-Herrera H (2021) MiR-191-5p is upregulated in culture media of implanted human embryo on day fifth of development. Reprod Biol Endocrinol 19: 109. https://doi.org/10.1186/s12958-021-00786-1
  30. Butler SA, Luttoo J, Freire MO, Abban TK, Borrelli PT, Iles RK (2013) Human chorionic gonadotropin (hCG) in the secretome of cultured embryos: hyperglycosylated hCG and hCG-free beta subunit are potential markers for infertility management and treatment. Reprod Sci 20: 1038–1045. https://doi.org/10.1177/1933719112472739
  31. Dominguez F, Meseguer M, Aparicio-Ruiz B, Piqueras P, Quinonero A, Simon C (2015) New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertil Steril 104: 908–914. https://doi.org/10.1016/j.fertnstert.2015.06.032
  32. Freis A, Roesner S, Marshall A, Rehnitz J, von Horn K, Capp E, Dietrich JE, Strowitzki T, Germeyer A (2021) Non-invasive Embryo Assessment: Altered Individual Protein Profile in Spent Culture Media from Embryos Transferred at Day 5. Reprod Sci 28: 1866–1873. https://doi.org/10.1007/s43032-020-00362-9
  33. Lee I, Ahn SH, Kim HI, Baek HW, Park YJ, Kim H, Aljassim AI, Shin W, Ryu C, Yoon J, Lee JH, Yun BH, Seo SK, Park JH, Choi YS, Cho S, Lee BS (2021) Cytokines in culture media of preimplantation embryos during in vitro fertilization: Impact on embryo quality. Cytokine 148: 155714. https://doi.org/10.1016/j.cyto.2021.155714
  34. Tabiasco J, Perrier d'Hauterive S, Thonon F, Parinaud J, Leandri R, Foidart JM, Chaouat G, Munaut C, Lombroso R, Selva J, Bergere M, Hammoud I, Kozma N, Aguerre-Girr M, Swales AK, Sargent IL, Le Bouteiller P, Ledee N (2009) Soluble HLA-G in IVF/ICSI embryo culture supernatants does not always predict implantation success: a multicentre study. Reprod Biomed Online 18: 374–381. https://doi.org/10.1016/s1472-6483(10)60096-x
  35. Taskin EA, Baltaci V, Cagiran G, Aytac R (2012) Detection of IL-1beta in culture media supernatants of pre-implantation human embryos; its relation with embryo grades and development. Gynecol Endocrinol 28: 296–298. https://doi.org/10.3109/09513590.2011.631627
  36. Zhao Q, Yin T, Peng J, Zou Y, Yang J, Shen A, Hu J (2013) Noninvasive metabolomic profiling of human embryo culture media using a simple spectroscopy adjunct to morphology for embryo assessment in in vitro fertilization (IVF). Int J Mol Sci 14: 6556–6570. https://doi.org/10.3390/ijms14046556
  37. Zmuidinaite R, Sharara FI, Iles RK (2021) Current Advancements in Noninvasive Profiling of the Embryo Culture Media Secretome. Int J Mol Sci 22. https://doi.org/10.3390/ijms22052513
  38. Torricelli M, Voltolini C, Bloise E, Biliotti G, Giovannelli A, De Bonis M, Imperatore A, Petraglia F (2009) Urocortin increases IL-4 and IL-10 secretion and reverses LPS-induced TNF-alpha release from human trophoblast primary cells. Am J Reprod Immunol 62: 224–231. https://doi.org/10.1111/j.1600-0897.2009.00729.x
  39. Sharma S, Godbole G, Modi D (2016) Decidual Control of Trophoblast Invasion. Am J Reprod Immunol 75: 341–350. https://doi.org/10.1111/aji.12466
  40. Sela HY, Goldman-Wohl DS, Haimov-Kochman R, Greenfield C, Natanson-Yaron S, Hamani Y, Revel A, Lavy Y, Singer O, Yachimovich-Cohen N, Turetsky T, Mandelboim O, Reubinoff B, Yagel S (2013) Human trophectoderm apposition is regulated by interferon gamma-induced protein 10 (IP-10) during early implantation. Placenta 34: 222–230. https://doi.org/10.1016/j.placenta.2012.12.008
  41. Ding J, Wang J, Cai X, Yin T, Zhang Y, Yang C, Yang J (2022) Granulocyte colony-stimulating factor in reproductive-related disease: Function, regulation and therapeutic effect. Biomed Pharmacother 150: 112903. https://doi.org/10.1016/j.biopha.2022.112903
  42. Seshagiri PB, Vani V, Madhulika P (2016) Cytokines and Blastocyst Hatching. Am J Reprod Immunol 75: 208–217. https://doi.org/10.1111/aji.12464
  43. Gao P, Zha Y, Wei L, Zhou X, Zhu S, Zhang H, Gao X, Jiang Y, Chen Y, Li J, Zhang J, Yu J, Wang S, Liu H, Feng L (2022) G-CSF: A vehicle for communication between trophoblasts and macrophages which may cause problems in recurrent spontaneous abortion. Placenta 121: 164–172. https://doi.org/10.1016/j.placenta.2022.03.125
  44. Scott VL, Shack LA, Eells JB, Ryan PL, Donaldson JR, Coats KS (2011) Immunomodulator expression in trophoblasts from the feline immunodeficiency virus (FIV)-infected cat. Virol J 8: 336. https://doi.org/10.1186/1743-422X-8-336
  45. Ines Baranao R, Piazza A, Rumi LS, Polak de Fried E (1997) Interleukin-1 beta levels in human embryo culture supernatants and their predictive value for pregnancy. Early Hum Dev 48: 71–80. https://doi.org/10.1016/s0378-3782(96)01837-3
  46. Dominguez F, Gadea B, Mercader A, Esteban FJ, Pellicer A, Simon C (2010) Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system. Fertil Steril 93: 774–782 e1. https://doi.org/10.1016/j.fertnstert.2008.10.019
  47. Abreu CM, Thomas V, Knaggs P, Bunkheila A, Cruz A, Teixeira SR, Alpuim P, Francis LW, Gebril A, Ibrahim A, Margarit L, Gonzalez D, Freitas PP, Conlan RS, Mendes Pinto I (2020) Non-invasive molecular assessment of human embryo development and implantation potential. Biosens Bioelectron 157: 112144. https://doi.org/10.1016/j.bios.2020.112144
  48. Losordo DW, Isner JM (2001) Estrogen and angiogenesis: A review. Arterioscler Thromb Vasc Biol 21: 6–12. https://doi.org/10.1161/01.atv.21.1.6
  49. Jing G, Yao J, Dang Y, Liang W, Xie L, Chen J, Li Z (2021) The role of beta-HCG and VEGF-MEK/ERK signaling pathway in villi angiogenesis in patients with missed abortion. Placenta 103: 16–23. https://doi.org/10.1016/j.placenta.2020.10.005
  50. Ozgokce C, Ocal A, Ermis IS (2023) Expression of NF-kappaB and VEGF in normal placenta and placenta previa patients. Adv Clin Exp Med 32: 297–306. https://doi.org/10.17219/acem/154858
  51. Melincovici CS, Bosca AB, Susman S, Marginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM (2018) Vascular endothelial growth factor (VEGF) — key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59: 455–467.
  52. Jin S, Yang C, Huang J, Liu L, Zhang Y, Li S, Zhang L, Sun Q, Yang P (2020) Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells. Stem Cell Res Ther 11: 68. https://doi.org/10.1186/s13287-020-1584-3
  53. Karizbodagh MP, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2017) Implantation Window and Angiogenesis. J Cell Biochem 118: 4141–4151. https://doi.org/10.1002/jcb.26088
  54. Akwii RG, Sajib MS, Zahra FT, Mikelis CM (2019) Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 8. https://doi.org/10.3390/cells8050471
  55. Chaube B, Citrin KM, Sahraei M, Singh AK, de Urturi DS, Ding W, Pierce RW, Raaisa R, Cardone R, Kibbey R, Fernandez-Hernando C, Suarez Y (2023) Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis. Nat Commun 14: 8251. https://doi.org/10.1038/s41467-023-43900-0
  56. Majali-Martinez A, Hiden U, Ghaffari-Tabrizi-Wizsy N, Lang U, Desoye G, Dieber-Rotheneder M (2016) Placental membrane-type metalloproteinases (MT-MMPs): Key players in pregnancy. Cell Adh Migr 10: 136–146. https://doi.org/10.1080/19336918.2015.1110671
  57. d'Hauterive SP, Close R, Gridelet V, Mawet M, Nisolle M, Geenen V (2022) Human Chorionic Gonadotropin and Early Embryogenesis: Review. Int J Mol Sci 23. https://doi.org/10.3390/ijms23031380
  58. Albrecht ED, Pepe GJ (1990) Placental steroid hormone biosynthesis in primate pregnancy. Endocr Rev 11: 124–150. https://doi.org/10.1210/edrv-11-1-124
  59. Halasz M, Szekeres-Bartho J (2013) The role of progesterone in implantation and trophoblast invasion. J Reprod Immunol 97: 43–50. https://doi.org/10.1016/j.jri.2012.10.011
  60. Espino YSS, Flores-Pliego A, Espejel-Nunez A, Medina-Bastidas D, Vadillo-Ortega F, Zaga-Clavellina V, Estrada-Gutierrez G (2017) New Insights into the Role of Matrix Metalloproteinases in Preeclampsia. Int J Mol Sci 18: https://doi.org/10.3390/ijms18071448
  61. Kapiteijn K, Koolwijk P, van der Weiden RM, van Nieuw Amerongen G, Plaisier M, van Hinsbergh VW, Helmerhorst FM (2006) Human embryo-conditioned medium stimulates in vitro endometrial angiogenesis. Fertil Steril 85 Suppl 1: 1232–1239. https://doi.org/10.1016/j.fertnstert.2005.11.029
  62. Berkhout RP, Keijser R, Repping S, Lambalk CB, Afink GB, Mastenbroek S, Hamer G (2020) High-quality human preimplantation embryos stimulate endometrial stromal cell migration via secretion of microRNA hsa-miR-320a. Hum Reprod 35: 1797–1807. https://doi.org/10.1093/humrep/deaa149

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cell proliferation (a), the number of migrated cells (b) and the residual area of ​​the desquamated cell layer (c). 1:1 DMEM/F12 + G-TL 2.5% FBS — the level of cell migration in the presence of DMEM/F12 medium and G-TL medium with 2.5% FBS; DMEM/F12 0% FBS — the level of migration in the presence of a medium with 0% FBS; DMEM/F12 2.5% FBS — the level of migration in the presence of a medium with 2.5% FBS; DMEM/F12 10% FBS — the level of migration in the presence of a medium with 10% FBS. Significance of differences: * — p <0.05; *** — p <0.001.

Download (237KB)
3. Fig. 2. Cell proliferation in the presence of FCS. (a) — FCS of embryos of different quality (A, AB, B or C) and medium with 2.5% FCS; (b) — FCS of embryos of different cellularity (2, 4, 5 or 6 blastomeres); (c) — FCS of embryos of different quality and cellularity 2 or 4 blastomeres; (d) — FCS of quality A embryos of different cellularity (2, 4 or 6 blastomeres); Control — cell proliferation level in DMEM/F12 and G-TL media in a 1:1 ratio and 2.5% FCS. Significance of differences: ** — p < 0.005.

Download (138KB)
4. Fig. 3. The number of migrated cells and the residual area of ​​the desquamated cell layer in the presence of FES. (a) — FES of embryos of different quality (A, AB, B, or C); (b) — FES of quality B embryos of different cellularity (4, 5, or 8 blastomeres); (c) — FES of quality C embryos of different cellularity (2, 3, or 4 blastomeres); (d) — FES of quality A embryos of different cellularity (2, 3, 4, 5, or 6 blastomeres); (e) — FES of embryos of different cellularity (2, 3, 4, 5, 6, or 8 blastomeres); (f) — FES of embryos of different quality and cellularity. Control — the level of cell proliferation in DMEM/F12 and G-TL media in a ratio of 1:1 and 2.5% FES. Significance of differences: * — p <0.05; ** — p < 0.01; *** — p <0.001.

Download (952KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».