Effect of adrenaline on mitochondrial membrane potential and indicators of the cellular immunity of hemocytes of the Mediterranean mussel (Mytilus galloprovincialis)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bivalves as inhabitants of the littoral zone of the World Ocean are subjected to fluctuations in abiotic environmental factors. Sharp fluctuations in environmental parameters are accompanied by the development of a physiological stress reaction in the organism of mollusks, while changes in their functional state occur due to the release of neurotransmitters into the hemolymph. Catecholamines are key signaling molecules in the system of neuroendocrine regulation of bivalve mollusks and also are involved in the modulation of the immune response during physiological stress. Hemocytes, as the central effector of the cellular immunity of bivalve mollusks, have adrenoreceptors on the surface of the cell membrane, which suggests the presence of a functional relationship between external stress and the cellular immune response. In the present work, the effect of adrenaline at concentrations of 1 and 10 μM on phagocytosis, adhesion and aggregation capacity of hemocytes of the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819) was investigated in vitro. The effect of adrenaline on the level of spontaneous production of reactive oxygen species and on changes in the mitochondrial membrane potential of hemocytes was also studied. It was shown that stimulation of mussel hemocytes with adrenaline at a concentration of 10 μM contributed to a reliable increase in the ability to phagocytosis. Adrenaline at a concentration of 1 μM significantly increased the ability of hemocytes to adhere to a solid substrate. Also, stimulation of cells with adrenaline at 10 μM for 30 minutes led to an increase in the membrane potential of hemocyte mitochondria. No reliable changes in the level of spontaneous production of active forms of oxygen in hemocytes under the influence of adrenaline were detected. The results of this work indicate that adrenaline has an immunomodulatory effect on mussel hemocytes and stimulates their aerobic metabolism.

Full Text

Restricted Access

About the authors

A. A. Tkachuk

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Author for correspondence.
Email: tkachuk@ibss-ras.ru
Russian Federation, Sevastopol

T. A. Kukhareva

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: tkachuk@ibss-ras.ru
Russian Federation, Sevastopol

E. S. Kladchenko

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: tkachuk@ibss-ras.ru
Russian Federation, Sevastopol

A. Yu. Andreyeva

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: tkachuk@ibss-ras.ru
Russian Federation, Sevastopol; Saint Petersburg

References

  1. Lange X, Klingbeil K, Burchard H (2020) Inversions of estuarine circulation are frequent in a weakly tidal estuary with variable wind forcing and seaward salinity fluctuations. J Geophysical Res: Oceans 125: e2019JC015789. https://doi.org/10.1029/2019JC015789
  2. Liu Z, Li M, Yi Q, Wang L, Song L (2018) The neuroendocrine-immune regulation in response to environmental stress in marine bivalves. Front Physiol 9: 1456. https://doi.org/10.3389/fphys.2018.01456
  3. Fabbri E, Balbi T, Canesi L (2024) Neuroendocrine functions of monoamines in invertebrates: Focus on bivalve molluscs. Mol Cell Endocrinol 112215. https://doi.org/10.1016/j.mce.2024.112215
  4. Adamo SA (2012) The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection. Horm Behav 62: 324–330. https://doi.org/10.1016/j.yhbeh.2012.02.012
  5. Amorim VE, Gonçalves O, Capela R, Fernández-Boo S, Oliveira M, Dolbeth M, Arenas F, Cardoso PG (2020) Immunological and oxidative stress responses of the bivalve Scrobicularia plana to distinct patterns of heatwaves. Fish Shellfish Immunol 106: 1067–1077. https://doi.org/10.1016/j.fsi.2020.09.024
  6. Sendra M, Sparaventi E, Novoa B, Figueras A (2021) An overview of the internalization and effects of microplastics and nanoplastics as pollutants of emerging concern in bivalves. Sci Total Environment 753: 142024. https://doi.org/10.1016/j.scitotenv.2020.142024
  7. Andreyeva AY, Kladchenko ES, Gostyukhina OL (2022) Effect of hypoxia on immune system of bivalve molluscs. Marine Biol J 7: 3–16. https://doi.org/10.21072/mbj.2022.07.3.01
  8. Tan K, Sun Y, Zhang H, Zheng H (2023) Effects of harmful algal blooms on the physiological, immunity and resistance to environmental stress of bivalves: Special focus on paralytic shellfish poisoning and diarrhetic shellfish poisoning. Aquaculture 563: 739000. https://doi.org/10.1016/j.aquaculture.2022.739000
  9. De la Ballina NR, Maresca F, Cao A, Villalba A (2022) Bivalve haemocyte subpopulations: a review. Front Immunol 13: 826255. https://doi.org/10.3389%2Ffimmu.2022.826255
  10. Lacoste A, Malham SK, Cueff A, Poulet SA (2001) Noradrenaline modulates hemocyte reactive oxygen species production via β-adrenergic receptors in the oyster Crassostrea gigas. Develop ComparImmunol 25: 285–289. https://doi.org/10.1016/S0145-305X(00)00067-7
  11. Lacoste A, Malham SK, Cueff A, Poulet SA (2001) Noradrenaline modulates oyster hemocyte phagocytosis via a β-adrenergic receptor–cAMP signaling pathway. Gen Comparat Endocrinol 122: 252–259. https://doi.org/10.1006/gcen.2001.7643
  12. Massarsky A, Trudeau VL, Moon TW (2011) β‐blockers as endocrine disruptors: the potential effects of human β‐blockers on aquatic organisms. J Exp Zool Part A: Ecol Gen Physiol 315: 251–265. https://doi.org/10.1002/jez.672
  13. Lacoste A, Malham SK, Gélébart F, Cueff A, Poulet SA (2002) Stress-induced immune changes in the oyster Crassostrea gigas. Dev Comp Immunol26: 1–9. https://doi.org/10.1016/S0145-305X(01)00067-2
  14. Jiang Q, Zhou Z, Wang L, Yang C, Wang J, Wu T, Song L (2014) Mutual modulation between norepinephrine and nitric oxide in haemocytes during the mollusc immune response. Scie Rep 4: 6963. https://doi.org/10.1038/srep06963
  15. Liao Q, Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L (2024) The immunotoxicity mechanism of hemocytes in Chlamys farreri incubated with noradrenaline and benzo [a] pyrene-7, 8-dihydrodiol-9, 10-epoxide alone or in combination. Fish Shellfish Immunol 144: 109278. https://doi.org/10.1016/j.fsi.2023.109278
  16. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res International 2014: 761264. https://doi.org/10.1155/2014/761264
  17. Álvarez-Diduk R, Galano A (2015) Adrenaline and noradrenaline: protectors against oxidative stress or molecular targets? J Physic Chem B119: 3479–3491. https://doi.org/10.1021/acs.jpcb.5b00052
  18. Cheng W, Chieu HT, Ho MC, Chen JC (2006) Noradrenaline modulates the immunity of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 21: 11–19. https://doi.org/10.1016/j.fsi.2005.09.003
  19. Chang CC, Wu ZR, Kuo CM, Cheng W (2007) Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish Shellfish Immunol 23: 24–33. https://doi.org/10.1016/j.fsi.2006.09.001
  20. Chang CC, Hung MD, Cheng W (2011) Norepinephrine depresses the immunity and disease-resistance ability via α1-and β1-adrenergic receptors of Macrobrachium rosenbergii. Develop Compar Immunol 35: 685–691. https://doi.org/10.1016/j.dci.2011.01.020
  21. Li JT, Lee PP, Chen OC, Cheng W, Kuo CM (2005) Dopamine depresses the immune ability and increases susceptibility to Lactococcus garvieae in the freshwater giant prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol 19: 269–280. https://doi.org/10.1016/j.fsi.2005.01.003
  22. Aladaileh S, Mohammad MG, Ferrari B, Nair SV, Raftos DA (2008) In vitro effects of noradrenaline on Sydney rock oyster (Saccostrea glomerata) hemocytes. Comparative Biochemistry and Physiology Part A: Mol Integrat Physiol 151: 691–697. https://doi.org/10.1016/j.cbpa.2008.08.028
  23. Barcia R, Ramos-Martínez JI (2011) Stress-based modulation of the immune response in molluscan hemocytes: a two-receptor model. Invertebrat Survival J 8: 56–58.
  24. Osada M, Matsutani T, Nomura T (1987) Implication of catecholamines during spawning in marine bivalve molluscs. International journal of invertebrate reproduction and development 12: 241–251. https://doi.org/10.1080/01688170.1987.10510324
  25. Osada M, Nomura T (1989) Seasonal variations of catecholamine levels in the tissues of the Japanese oyster, Crassostrea gigas. Comp Biochem Physiol Part C: Comp Pharmacol 93: 171–173. https://doi.org/10.1016/0742-8413(89)90029-7
  26. Chen M, Yang H, Xu B, Wang F, Liu B (2008) Catecholaminergic responses to environmental stress in the hemolymph of Zhikong scallop Chlamys farreri. J Exp Zool Part A: Ecol Gen Physiol 309: 289–296. https://doi.org/10.1002/jez.458
  27. Cao A, Ramos-Martínez JI, Barcia R (2007) In hemocytes from Mytilus galloprovincialis Lmk., treatment with corticotropin or growth factors conditions catecholamine release. Internat Immunopharmacol 7: 1395–1402. https://doi.org/10.1016/j.intimp.2007.07.008
  28. Canesi L, Miglioli A, Balbi T, Fabbri E (2022) Physiological roles of serotonin in bivalves: possible interference by environmental chemicals resulting in neuroendocrine disruption. Front Endocrinol 13: 792589. https://doi.org/10.3389/fendo.2022.792589
  29. Chen H, Wang L, Zhou Z, Hou Z, Liu Z, Wang W, Gao D, Gao Q, Wang M, Song, L (2015) The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. BMC Genomics 16: 1–14. https://doi.org/10.1186/s12864-015-2150-8
  30. Kuchel RP, Raftos DA (2011) In vitro effects of noradrenaline on Akoya pearl oyster (Pinctada imbricata) haemocytes. Fish Shellfish Immunol 31: 365–372. https://doi.org/10.1016/j.fsi.2011.05.025
  31. Freeman SA, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262: 193–215. https://doi.org/10.1111/imr.12212
  32. Volodchenko AI, Tsirkin VI, Kostyaev AA (2014) The mechanism of change in the rate of agglutination of human erythrocytes under the influence of adrenaline. Hum Physiol 40: 171–178. https://doi.org/10.1134/S0362119714010198
  33. Andreyeva AY, Kladchenko ES, Sudnitsyna JS, Krivchenko AI, Mindukshev IV, Gambaryan S (2021) Protein kinase A activity and NO are involved in the regulation of crucian carp (Carassius carassius) red blood cell osmotic fragility. Fish Physiol Biochem 47: 1105–1117. https://doi.org/10.1007/s10695-021-00971-4
  34. Chelebieva ES, Kladchenko ES, Mindukshev IV, Gambaryan S, Andreyeva AY (2024) ROS formation, mitochondrial potential and osmotic stability of the lamprey red blood cells: effect of adrenergic stimulation and hypoosmotic stress. Fish Physiol Biochem 1–12. https://doi.org/10.1007/s10695-024-01342-5
  35. Ткачук АА, Кладченко ЕС, Андреева АЮ (2023) Роль бета-адренорецепторов и аденилатциклазы в процессе адаптации гемоцитов средиземноморской мидии (Mytilus galloprovincialis) к гипоосмотическому стрессу. Биоразнообраз устойч разв 8: 52–61. [Tkachuk AA, Kladchenko ES, Andreeva AY (2023) The role of beta-adrenergic receptors and adenylate cyclase in the process of adaptation of hemocytes of the Mediterranean mussel (Mytilus galloprovincialis) to hypoosmotic stress. Biodivers Sustainable Devel 8: 52–61. (In Russ)]. https://doi.org/10.21072/eco.2023.28.04
  36. VendittiP, Di Stefano L, Di Meo S. (2013) Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13: 71–82. https://doi.org/10.1016/j.mito.2013.01.008
  37. Koch RE, Buchanan KL, Casagrande S, Crino O, Dowling DK, Hill GE, Hood WR, McKenzie M, Mariette MM, Noble DWA, Pavlova A, Seebacher F, Sunnucks P, Udino E, White CR, Salin K, Stier A (2021) Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends Ecol Evol 36: 321–332. https://doi.org/10.1016/j.tree.2020.12.006
  38. Fernando L, Rosa BC, Safi DA, Cury Y, Curi R (1992) Effect of epinephrine on glucose metabolismand hydrogen peroxide content in incubated rat macrophages. Biochem Pharmacol 44: 2235–2241. https://doi.org/10.1016/0006-2952(92)90352-J
  39. Konovalova SA, Zubatkina IS, Savina MV (2010) The influence of estradiol, epinephrine and cAMP on mitochondria energization and intracellular free Ca²⁺ concentration in lamprey hepatocytes. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797: 126–127. https://doi.org/10.1016/j.bbabio.2010.04.375
  40. Tapbergenov SO, Sovetov BS, Smailova ZK (2022) Adrenergic receptors in the mechanism of regulation of mitochondrial and cytoplasmic enzymes of cardiomyocytes by catecholamines. Bull Exp Biol Med 173: 330–334. https://doi.org/10.1007/s10517-022-05544-w

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of adrenaline (1 μM and 10 μM) on the intensity of phagocytosis of hemocytes of the Mediterranean mussel M. galloprovincialis. (a) – micrographs of hemocytes containing particles of green fluorescent zymosan (↓), phagocytic index (b) and phagocytic activity (c) of hemolymph cells. * – significant relative to the control at p ≤ 0.05 (n = 10).

Download (85KB)
3. Fig. 2. Effect of adrenaline (1 μM and 10 μM) on adhesion and aggregation of hemolymph cells of Mediterranean mussels M. galloprovincialis: (a) – micrograph of hemocyte suspension activated by addition of adrenaline; (b) – number of adherent hemocytes; (c) – number of hemocyte aggregates; (d) – area of ​​hemocyte aggregates. ↓ – adherent hemocytes; ↓ – aggregates. * – significant relative to control at p ≤ 0.05 (n = 10).

Download (136KB)
4. Fig. 3. Content of active oxygen forms in mussel hemocytes under the influence of adrenaline (1 μM and 10 μM) for 5 min (a) and 30 min (b).

Download (85KB)
5. Fig. 4. Changes in the membrane potential of mitochondria of mussel hemocytes under the influence of adrenaline (1 μM and 10 μM) for 5 min (a) and 30 min (b). * – significant relative to the control at p ≤ 0.05 (n = 10)

Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».