Comparative Study of the Temperature Coefficient Q10 of Hibernating Ground Squirrels Urocitellus undulatus and Cooled Rats of Different Ages

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The temperature coefficients Q10 of heart rate (Q10HR) or oxygen consumption (Q10Ox) were analyzed during the arises from torpor of long-tailed ground squirrels Urocitellus undulatus, as well as during the rewarming of precooled adult rats and rat pups. The Q10Ox value was calculated using a standard equation, whereas for calculating Q10HR, the equation was empirically modified to track changes in this parameter over a wide range of body temperatures (Tb). It was found that during the initial period of rewarming from torpor, at Th ≤ 10 ℃, ground squirrels experienced a sharp increase in the temperature coefficients up to Q10HR = 40 – 50 and Q10Ox = 6 – 7. Even higher values of Q10HR > 100 were found at the beginning of rewarming of rat pups, although they had a low level of Q10Ox = 1.2. Adult rats could not withstand cooling below 16 ℃ and demonstrated moderate variability of both Q10HR = 2.0 – 4.0 and Q10Ox = 2.0 – 2.2. During the restoration of normal Tb, the Q10HR in all animals approached the level ~2.0 predicted by the Van't Hoff-Arrhenius rule for chemical reactions in both living and inanimate nature. We assume that high values of Q10HR and Q10Ox, detected in the early period of ground squirrel’s arousal from hibernation, may reveal the functioning of adaptive processes aimed at accelerating body warming. Resistance to cooling and high Q10HR coefficient in the rat pups may indicate rudimentary adaptability to hibernation in the juvenile period of rats, as representatives of the order Rodentia, which also includes natural hibernators such as ground squirrels.

Full Text

Restricted Access

About the authors

N. M. Zakharova

Institute of Cell Biophysics of the Russian Academy of Sciences

Author for correspondence.
Email: n_m_zakharova@pbcras.ru
Russian Federation, Pushchino

Yu. S. Tarahovsky

Institute of Cell Biophysics of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: tarahov@rambler.ru
Russian Federation, Pushchino; Pushchino

M. O. Khrenov

Institute of Cell Biophysics of the Russian Academy of Sciences

Email: n_m_zakharova@pbcras.ru
Russian Federation, Pushchino

References

  1. Tansey EA, Johnson CD (2015) Recent advances in thermoregulation. Adv Physiol Ed 39:139–148. https://doi.org/10.1152/advan.00126.2014
  2. Horii Y, Shiina T, Shimizu Y (2018) The Mechanism Enabling Hibernation in Mammals. Adv Exp Med Biol 1081:45–60. https://doi.org/10.1007/978-981-13-1244-1_3
  3. Ivanov KP (2000) Physiological blocking of the mechanisms of cold death: theoretical and experimental considerations. J Thermal Biol 25:467–479. https://doi.org/10.1016/s0306-4565(00)00012-7
  4. Carey HV, Andrews MT, Martin SL (2003) Mammalian Hibernation: Cellular and Molecular Responses to Depressed Metabolism and Low Temperature. Physiol Rev 83:1153–1181. https://doi.org/10.1152/physrev.00008.2003
  5. Ruf T, Geiser F (2014) Daily torpor and hibernation in birds and mammals. Biol Rev 90:891–926. https://doi.org/10.1111/brv.12137
  6. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy — Where to from Here? Front Neurol 6:198. https://doi.org/10.3389/fneur.2015.00198
  7. Han Z, Liu X, Luo Y, Ji Х (2015) Therapeutic hypothermia for stroke: Where to go? Experimental Neurology 272:67–77. https://doi.org/10.1016/j.expneurol.2015.06.006
  8. Huang F-Y, Huang B-T, Wang P-J, Zuo Z-L, Heng Y, Xia T-L, Gui Y-Y, Lv W-Y, Zhang C, Liao Y-B, Liu W, Chen M, Zhu Y (2015) The efficacy and safety of prehospital therapeutic hypothermia in patients with out-of-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation 96:170–179. https://doi.org/10.1016/j.resuscitation.2015.08.005
  9. Otto KA (2015) Therapeutic hypothermia applicable to cardiac surgery. Vet Anaesth Analg 42:559–569. https://doi.org/10.1111/vaa.12299
  10. Cerri M, Hitrec T, Luppi M, Amici R (2021) Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 128:218–232. https://doi.org/10.1016/j.neubiorev.2021.03.037
  11. Choukèr (2018) Hibernating astronauts-science or fiction? Pflueg. Arch. Eur. J. Physiol.
  12. Zakharova NM, Tarahovsky YS, Komelina NP, Fadeeva IS, Kovtun AL (2021) Long-term pharmacological torpor of rats with feedback-controlled drug administration. Life Sci Space Res 28:18–21. https://doi.org/10.1016/j.lssr.2020.11.002
  13. Kornhall DK, Martens-Nielsen J (2016) The prehospital management of avalanche victims. J R Army Med Corps 162:406–412. https://doi.org/10.1136/jramc-2015-000441
  14. Sward DG, Bennett BL (2014) Wilderness medicine. World J Emerg Med 5:5–15. https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.001
  15. Alam HB (2012) Translational barriers and opportunities for emergency preservation and resuscitation in severe injuries. Br J Surg 99 Suppl 1:29–39. https://doi.org/10.1002/bjs.7756
  16. Tarahovsky YS, Khrenov MO, Kovtun AL, Zakharova NM (2020) Comparison of natural and pharmacological hypothermia in animals: Determination of activation energy of metabolism. Journal of Thermal Biology 92:102658. https://doi.org/10.1016/j.jtherbio.2020.102658
  17. Zakharova NM, Tarahovsky YS, Fadeeva IS, Zakharova NM (2019) A pharmacological composition for induction of a reversible torpor-like state and hypothermia in rats. Life Sci 219:190–198. https://doi.org/10.1016/j.lfs.2019.01.023
  18. Shimaoka H, Shiina T, Suzuki H, Horii Y, Horii K, Shimizu Y (2021) Successful induction of deep hypothermia by isoflurane anesthesia and cooling in a non-hibernator, the rat. J Physiol Sci 71:10. https://doi.org/10.1186/s12576-021-00794-1
  19. Yang Y, Yuan J, Field RL, Ye D, Hu Z, Xu K, Xu L, Gong Y, Yue Y, Kravitz AV, Bruchas MR, Cui J, Brestoff JR, Chen H (2023) Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat Metab 5:789–803. https://doi.org/10.1038/s42255-023-00804-z
  20. Bridwell RE, Willis GC, Gottlieb M, Koyfman A, Long B (2021) Decompensated hypothyroidism: A review for the emergency clinician. Am J Emerg Med 39:207–212. https://doi.org/10.1016/j.ajem.2020.09.062
  21. Naito H, Nojima T, Fujisaki N, Tsukahara K, Yamamoto H, Yamada T, Aokage T, Yumoto T, Osako T, Nakao A (2020) Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med Surg 7:e501. https://doi.org/10.1002/ams2.501
  22. Zakharova NM, Tarahovsky YS, Komelina NP, Khrenov MO, Kovtun AL (2021) Pharmacological torpor prolongs rat survival in lethal normobaric hypoxia. J Thermal Biol 98:102906. https://doi.org/10.1016/j.jtherbio.2021.102906
  23. Bejaoui M, Pantazi E, Folch-Puy E, Baptista PM, García-Gil A, Adam R, Roselló-Catafau J (2015) Emerging concepts in liver graft preservation. World J Gastroenterol 21:396–407. https://doi.org/10.3748/wjg.v21.i2.396
  24. Minor T, Paul A (2013) Hypothermic reconditioning in organ transplantation. Curr Opin Organ Transplant 18:161–167. https://doi.org/10.1097/MOT.0b013e32835e29de
  25. Søreide K (2014) Clinical and translational aspects of hypothermia in major trauma patients: from pathophysiology to prevention, prognosis and potential preservation. Injury 45:647–654. https://doi.org/10.1016/j.injury.2012.12.027
  26. Soo E, Welch A, Marsh C, McKay D (2020) Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplantat Rev 34:100512. https://doi.org/10.1016/j.trre.2019.100512
  27. Kang K (2016) Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude. Biochim Biophys Acta 1858:318–325. https://doi.org/10.1016/j.bbamem.2015.12.011
  28. Hiebert SM, Noveral J (2007) Are chicken embryos endotherms or ectotherms? A laboratory exercise integrating concepts in thermoregulation and metabolism. Adv Physiol Educ 31:97–109. https://doi.org/10.1152/advan.00035.2006
  29. Schmidt-Nielsen K (1990) Animal physiology: Adaptation and environment, 4th ed. Cambridge University Press, Cambridge, New York
  30. Geiser F (2016) Conserving energy during hibernation. J Exp Biol 219:2086–2087. https://doi.org/10.1242/jeb.129171
  31. Geiser F (2004) Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor. Ann Rev Physiol 66:239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105
  32. Kampmann B, Bröde P (2019) Heat Acclimation Does Not Modify Q10 and Thermal Cardiac Reactivity. Front Physiol 10:1524. https://doi.org/10.3389/fphys.2019.01524
  33. Currie SE, Noy K, Geiser F (2015) Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands. Am J Physiol Regul Integr Comp Physiol 308:R34–41. https://doi.org/10.1152/ajpregu.00341.2014
  34. Bröde P, Kampmann B (2018) Accuracy of metabolic rate estimates from heart rate under heat stress—an empirical validation study concerning ISO 8996. Ind Health 57:615–620. https://doi.org/10.2486/indhealth.2018-0204
  35. Kampmann B, Bröde P (2015) Metabolic costs of physiological heat stress responses — Q10 coefficients relating oxygen consumption to body temperature. Extrem Physiol Med 4:A103. https://doi.org/10.1186/2046-7648-4-S1-A103
  36. Michenfelder JD, Milde JH (1991) The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology 75:130–136. https://doi.org/10.1097/00000542-199107000-00021
  37. Song X, Körtner G, Geiser F (1997) Thermal relations of metabolic rate reduction in a hibernating marsupial. Am J Physiol 273:R2097-104. https://doi.org/10.1152/ajpregu.1997.273.6.R2097
  38. Liu B, Hui K, Qin F (2003) Thermodynamics of Heat Activation of Single Capsaicin Ion Channels VR1. Biophysical Journal 85:2988–3006.
  39. Fohlmeister JF (2015) Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature. J Neurophysiol 113:3759–3777. https://doi.org/10.1152/jn.00551.2014
  40. Andjus RK, Smith AU (1954) Revival of hypothermic rats after arrest of circulation and respiration. J Physiol 123:66P-67P.
  41. Andjus RK, Smith AU (1955) Reanimation of adult rats from body temperatures between 0 and + 2 degrees C. J Physiol 128:446–472. https://doi.org/10.1113/jphysiol.1955.sp005318
  42. Andjus RK, Dzakula Z, Markley JL, Macura S (2005) Brain energetics and tolerance to anoxia in deep hypothermia. Ann N Y Acad Sci 1048:10–35. https://doi.org/10.1196/annals.1342.003
  43. Lomako VV, Shilo AV (2009) Effect of General Cooling on Rat Behaviour in "Open Field" Test. Probl Cryobiol 19:421–430.
  44. Bullard RW, Funkhouser GE (1962) Estimated regional blood flow by rubidium 86 distribution during arousal from hibernation. Am J Physiology-Legacy Content 203:266–270. https://doi.org/10.1152/ajplegacy.1962.203.2.266
  45. Zakharova NM (2014) Some features of body warming at provoked awakening of hibernating ground squirrels Spermophilus undulatus. Fundamental Res 6:1401–1405. (In Russ).
  46. Mundim KC, Baraldi S, Machado HG, Vieira FMC (2020) Temperature coefficient (Q10) and its applications in biological systems: Beyond the Arrhenius theory. Ecol Model 431:109127. https://doi.org/10.1016/j.ecolmodel.2020.109127
  47. Rogalska J, Caputa M (2005) Spontaneously reduced body temperature and gasping ability as a mechanism of extreme tolerance to asphyxia in neonatal rats. J Thermal Biol 30:360–369. https://doi.org/10.1016/j.jtherbio.2005.02.003
  48. Kletkiewicz H, Rogalska J, Nowakowska A (2016) Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats. J Physiol Pharmacol 67:287–299.
  49. Geiser F, Currie SE, O'Shea KA, Hiebert SM (2014) Torpor and hypothermia: reversed hysteresis of metabolic rate and body temperature. Am J Physiol-Regul, Integrat Comparat Physiol 307:R1324-R1329. https://doi.org/10.1152/ajpregu.00214.2014
  50. Lyman CP, Williams JS, Malan A, Wang LCH (1984) Hibernation and torpor in mammals and birds. Academic Press, New York.
  51. Zanetti F, Chen C-Y, Baker HA, Sugiura MH, Drew KL, Barati Z (2023) Cardiac Rhythms and Variation in Hibernating Arctic Ground Squirrels. Physiol Biochem Zool 96:167–176. https://doi.org/10.1086/724688
  52. MacCannell ADV, Jackson EC, Mathers KE, Staples JF (2018) An improved method for detecting torpor entrance and arousal in a mammalian hibernator using heart rate data. J Exp Biol 221. https://doi.org/10.1242/jeb.174508
  53. Milsom WK, Zimmer MB, Harris MB (1999) Regulation of cardiac rhythm in hibernating mammals. Com Biochem Physiol Part A: Mol & Integrat Physiol 124:383–391. https://doi.org/10.1016/s1095-6433(99)00130-0
  54. Shinde AB, Song A, Wang QA (2021) Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Front Endocrinol 12:651763. https://doi.org/10.3389/fendo.2021.651763
  55. Nedergaard J, Cannon B (2018) Brown adipose tissue as a heat-producing thermoeffector. http://dx.doi.org/10.1016/B978-0-444-63912-7.00009-6
  56. Shimaoka H, Kawaguchi T, Morikawa K, Y Sano, K Naitou, H Nakamori, T Shiina, Y Shimizu (2017) Induction of hibernation-like hypothermia by central activation of the A1 adenosine receptor in a non-hibernator, the rat. J Physiol Sci 68:425–430. https://doi.org/10.1007/s12576-017-0543-y
  57. Nowack J, Turbill C (2022) Survivable hypothermia or torpor in a wild-living rat: rare insights broaden our understanding of endothermic physiology. J Comp Physiol B 192:183–192. https://doi.org/10.1007/s00360-021-01416-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Selected examples of experiments showing the relationship of Q10 coefficients with changes in temperature and physiological parameters obtained during gopher awakening. (a) - Change in time of Th and HR parameters obtained in the experiment, as well as Q10HR values calculated using (3). Note: the Q10HR curve is shorter than the Th and HR curves because, according to (3), the Q10HR curve does not include the first and last 15 minutes of measurements. (b) - Time variation of Tb and VOx parameters obtained in the experiment and Q10Ox values calculated using (2)

Download (34KB)
3. Fig. 2. Dependence of Q10 coefficients on temperature. Dependence of Q10HR on Th , as well as dependence of Q10Ox on Tb is presented Where: (a, a‘) - sleeping gophers, (b, b’) - adult rats, (c, c') - rats. Values are presented as Mean ± SEM, n = 5-10. Note: curves a, b and c are obtained using (3), whereas curves a‘, b’ and c' are obtained using (2). One-factor ANOVA test (GraphPad Prism 8 software) shows that mean Q10Ox data of gopher tortoises (a') were temperature dependent: **** P < 0.0001. Temperature dependence was also observed when analysing the selected temperature range 20℃ - 35℃, when values were in the range 0 ≤ Q10Ox ≤ 1, *** p < 0.0005. In adult rats and rats (b‘ and c’), Q10Ox values were not statistically dependent on temperature: p < 0.05

Download (89KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».