A comparative distribution of parvalbumin-immunopositive neural elements in the spinal cord of newborn and adult cats
- Authors: Veshchitskii A.A.1, Belyaev A.V.1, Merkulyeva N.S.1
-
Affiliations:
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- Issue: Vol 60, No 3 (2024)
- Pages: 299-307
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0044-4529/article/view/270479
- DOI: https://doi.org/10.31857/S0044452924030082
- EDN: https://elibrary.ru/YWXRTY
- ID: 270479
Cite item
Abstract
We analyzed characteristic features of the parvalbumin-immunostaining within the lumbosacral spinal cord of newborn kittens. In contrast to the adults, parvalbumin-immunostaining was mainly revealed for the sensory fibers located within the dorsal horns and in the medial part of the intermediate gray matter. The location of these fibers partially resembles the location of Clarke's nuclei, but lasted throughout the total length of the lumbar spinal cord and merged with the presumptive Stilling’s nuclei in the sacral region. Therefore, in newborns, in contrast to adults, the parvalbumin-immunostaining proprioceptive fibers seem like a single unit. We propose that with maturation, this system is restructured because of the spread of the neuronal and neuropil elements of the lumbar enlargement responsible for the locomotor control. As a result, two local nuclear complexes: Clarke’s and Stilling’s are retained. A single population of parvalbumin-immunostaining neurons in newborns are premotor interneurons located around the lamina IX. These neurons are characterized by the low or absent NeuN-immunostaining. We believe that this neurochemical feature may be inherent for these cells.
Full Text

About the authors
A. A. Veshchitskii
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: merkulyevan@infran.ru
Russian Federation, St. Petersburg
A. V. Belyaev
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: merkulyevan@infran.ru
Russian Federation, St. Petersburg
N. S. Merkulyeva
Pavlov Institute of Physiology of the Russian Academy of Sciences
Author for correspondence.
Email: merkulyevan@infran.ru
Russian Federation, St. Petersburg
References
- Sherrington CS, Laslett EE (1903) Observations on some spinal reflexes and the interconnection of spinal segments. J Physiol 29:58–96. https://doi.org/10.1113/jphysiol.1903.sp000946
- Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81:539–568. https://doi.org/ 10.1152/physrev.2001.81.2.539
- Niu J, Ding L, Li JJ, Kim H, Liu J, Li H, Moberly A, Badea TC, Duncan ID, Son Y-J, Scherer SS, Luo W (2013) Modality-based organization of ascending somatosen sory axons in the direct dorsal column pathway. J Neurosci 33:17691–17709. https://doi.org/ 10.1523/JNEUROSCI.3429-13.2013
- Matsushita M, Yaginuma H (1989) Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 288:19–38. https://doi.org/ 10.1002/cne.902880103
- Stecina K, Fedirchuk B, Hultborn H (2013) Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J Physiol 591:5433–5443. https://doi.org/ 10.1113/jphysiol.2012.249110
- Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ (2012) Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. J Physiol 590:1737–1755. https://doi.org/ 10.1113/jphysiol.2011.226852
- Clarke JAL (1997) Further researches on the grey substance of the spinal cord. Philos Trans R Soc Lond 149:437–467. https://doi.org/ 10.1098/rstl.1859.0022
- Hogg ID (1944) The development of the nucleus dorsalis (Clarke’s column). J Comp Neurol 81:69–95. https://doi.org/ 10.1002/cne.900810105
- Matsushita M, Hosoya Y (1979) Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Res 173:185–200. https://doi.org/ 10.1016/0006-8993(79)90620-6
- Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 230:133–141. https://doi.org/ 10.1002/cne.902300112
- Akopians A, Runyan SA, Phelps PE (2003) Expression of L1 decreases during postnatal development of rat spinal cord. J Comp Neurol 467:375–388. https://doi.org/ 10.1002/cne.10956
- Edgley SA, Grant GM (1991) Inputs to spinocerebellar tract neurones located in https://doi.org/ 10.1002/cne.903050112
- Sengul G, Watson C, Tanaka I, Paxinos G (2012) Atlas of the spinal cord: mouse, rat, rhesus, marmoset, and human. Elsevier Science
- Mott F (1888) Microscopical examination of Clarke’s column in man, the monkey, and the dog. J Anat Physiol 22:479–495
- Snyder RL, Faull RL, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181:833–852. https://doi.org/ 10.1002/cne.901810409
- Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184:81–106. https://doi.org/ 10.1002/cne.901840106
- Ha H, Liu CN (1968) Cell origin of the ventral spinocerebellar tract. J Comp Neurol 133:185–206. https://doi.org/ 10.1002/cne.901330204
- Xu Q, Grant G (1988) Collateral projections of neurons from the lower part of the spinal cord to anterior and posterior cerebellar termination areas. A retrograde fluorescent double labeling study in the cat. Exp Brain Res 72:562–576. https://doi.org/ 10.1007/BF00250601
- Petras JM, Cummings JF (1977) The origin of spinocerebellar pathways. II. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord. J Comp Neurol 173:693–716. https://doi.org/ 10.1002/cne.901730405
- Zhang Y, Luo Y, Sasamura K, Sugihara I (2021) Single axonal morphology reveals high heterogeneity in spinocerebellar axons originating from the lumbar spinal cord in the mouse. J Comp Neurol 529:3893–3921. https://doi.org/ 10.1002/cne.25223
- Cooper S, Sherrington CS (1940) Gower’s tract and spinal border cells. Brain 63:123–134. https://doi.org/ 10.1093/brain/63.2.123
- Sprague JM (1953) Spinal border cells and their role in postural mechanism (Schiff-Sherrington phenomenon). J Neurophysiol 16:464–474. https://doi.org/ 10.1152/jn.1953.16.5.464
- Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475. https://doi.org/ 10.1016/0306-4522(90)90091-h
- Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Rev 19:163–179. https://doi.org/ 10.1016/0165-0173(94)90010-8
- Clowry GJ, Arnott GA, Clement-Jones M, Fallah Z, Gould S, Wright C (2000) Changing pattern of expression of parvalbumin immunoreactivity during human fetal spinal cord development. J Comp Neurol 423:727–735
- Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13:1233–1239. https://doi.org/ 10.1038/nn.2637
- John A, Brylka H, Wiegreffe C, Simon R, Liu P, Jüttner R, Crenshaw EB, Luyten FP, Jenkins NA, Copeland NG, Birchmeier C, Britsch S (2012) Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development. Dev Camb Engl 139:1831–1841. https://doi.org/ 10.1242/dev.072850
- Dallman MA, Ladle DR (2013) Quantitative analysis of locomotor defects in neonatal mice lacking proprioceptive feedback. Physiol Behav 120:97–105. https://doi.org/ 10.1016/j.physbeh.2013.07.005
- Ni Y, Nawabi H, Liu X, Yang L, Miyamichi K, Tedeschi A, Xu B, Wall NR, Callaway EM, He Z (2014) Characterization of long descending premotor propriospinal neurons in the spinal cord. J Neurosci 34:9404–9417. https://doi.org/ 10.1523/JNEUROSCI.1771-14.2014
- Zhang JH, Morita Y, Hironaka T, Emson PC, Tohyama M (1990) Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol 302:715–728. https://doi.org/ 10.1002/cne.903020404
- Clowry GJ, Fallah Z, Arnott G (1997) Developmental expression of parvalbumin by rat lower cervical spinal cord neurones and the effect of early lesions to the motor cortex. Dev Brain Res 102:197–208. https://doi.org/ 10.1016/s0165-3806(97)00098-9
- Veshchitskii A, Shkorbatova P, Merkulyeva N (2022) Neurochemical atlas of the cat spinal cord. Front Neuroanat 16:1034395. https://doi.org/ 10.3389/fnana.2022.1034395
- Veshchitskii A, Musienko P, Merkulyeva N (2023) Distribution of parvalbumin-expressing neuronal populations in the cat cervical and lumbar spinal cord gray matter. J Evol Biochem Physiol 59(4): 1100–1111.
- Aoyama M, Hongo T, Kudo N (1988) Sensory input to cells of origin of uncrossed spinocerebellar tract located below Clarke’s column in the cat. J Physiol 398:233–257. https://doi.org/ 10.1113/jphysiol.1988.sp017040
- Matsushita M (1988) Spinocerebellar projections from the lowest lumbar and sacral-caudal segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 274:239–254. https://doi.org/ 10.1002/cne.902740208
- Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 518:161–166. https://doi.org/ 10.1016/j.neulet.2012.05.002
- Merkulyeva N, Mikhalkin A, Zykin P (2018) Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cell Mol Neurobiol 38:1137–1143. https://doi.org/ 10.1007/s10571-018-0585-6
- Mikhalkin A, Nikitina N, Merkulyeva N (2021) Heterochrony of postnatal accumulation of nonphosphorylated heavy-chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 529:1430–1441. https://doi.org/ 10.1002/cne.25028
- Merkulyeva N, Mikhalkin A (2024) Transient expression of heavy-chain neurofilaments in the perigeniculate nucleus of cats. Brain Struct Funct. https://doi.org/ 10.1007/s00429-023-02752-6
- Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/ 10.1038/nmeth.2019
- Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Dev Camb Engl 116:201–211. https://doi.org/ 10.1242/dev.116.1.201
- Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379. https://doi.org/ 10.1002/cne.901000205
- Réthelyi M, Szentágothai J (1973) Distribution and connections of afferent fibres in the spinal cord. In: Iggo A (ed) Somatosensory System. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 207–252
- Chakrabarty S, Shulman B, Martin JH (2009) Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord. J Neurosci 29:8816–8827. https://doi.org/ 10.1523/JNEUROSCI.0735-09.2009
- Knyihár-Csillik E, Rakic P, Csillik B (1999) Illusive transience of parvalbumin expression during embryonic development of the primate spinal cord. Int J Dev Neurosci 17:79–97. https://doi.org/ 10.1016/s0736-5748(98)00090-2
- Siembab VC, Smith CA, Zagoraiou L, Berrocal MC, Mentis GZ, Alvarez FJ (2010) Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells. J Comp Neurol 518:4675–4701. https://doi.org/ 10.1002/cne.22441
- Floyd TL, Dai Y, Ladle DR (2018) Characterization of calbindin D28k expressing interneurons in the ventral horn of the mouse spinal cord. Dev Dyn 247:185–193. https://doi.org/ 10.1002/dvdy.24601
- Alekseeva OS, Gusel’nikova VV, Beznin GV, Kor zhevskii DE (2015) Prospects for the application of the NeuN nuclear protein as a marker of the functional state of nerve cells in vertebrates. J Evol Biochem Physiol 51(5): 357–369.
- Shneider NA, Brown MN, Smith CA, Pickel J, Alvarez FJ (2009) Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Develop 4:42. https://doi.org/ 10.1186/1749-8104-4-42
- Taylor A, Ellaway PH, Durbaba R (1999) Why are there three types of intrafusal muscle fibers? Prog Brain Res 123:121–131. https://doi.org/ 10.1016/s0079-6123(08)62849-6
- Merkulyeva N, Mikhalkin A, Nikitina N (2020) Characteristics of the neurochemical state of neurons in the mesencephalic nucleus of the trigeminal nerve in cats. Neurosci Behav Physiol 50(4): 511–515.
Supplementary files
