Stimulating effect of low concentrations of Eu3+ on spontaneous cardiac contractions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The negative cumulative effects of lanthanides on the human body are well known; they are associated mainly with the toxic effects of rare earth metals (REE) on muscle tissue. However, the effects of low concentrations of these metals on muscle are less understood. In our work, we found out an unusual stimulating effect of low concentrations of europium (Eu3+) on spontaneous contractions of atria of a frog. The purpose of this study was to study the stimulating effect of Eu3+ on the contraction of atria, both normally and in the presence of the mitochondrial respiration inhibitor sodium azide (NaN3). The study was carried out using two experimental models: muscle preparations obtained from isolated atria of the heart of the frog Rana ridibunda and mitochondria isolated from the heart of male Wistar rats. As a result of the studies, it was established that Eu3+ in a concentration of 0.2 mM, at a temperature of 20°C, potentiated contractions of the frog atria in situ; both the amplitude and the maximum rate of increase of single spontaneous contractions increased. Spontaneous atrial contractions became more resistant to the effects of 1 mM NaN3. At the same time, Eu3+ did not affect the respiration of energized mitochondria (activated by ADP (state 3) or 2,4-dinitrophenol (state 3UDNP). The intensity of this respiration decreased after the calcium load of mitochondria, regardless of the presence of Eu3+ in the medium. Thus, Eu3+ ions at low concentrations (0.2 mM) stimulated atrial contraction and had a positive inotropic effect. The stimulating effect of low concentrations of Eu3+ on the heart can be explained by the synergism in the action of Ca2+ and Eu3+ on calcium channels, stimulation of Ca2+-dependent processes in cardiomyocytes and the absence of a negative effect on mitochondrial respiration.

Full Text

Restricted Access

About the authors

K. V. Sobol

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Author for correspondence.
Email: peep9@yandex.ru
Russian Federation, St. Petersburg

S. M. Korotkov

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Email: peep9@yandex.ru
Russian Federation, St. Petersburg

I. V. Shemarova

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Email: peep9@yandex.ru
Russian Federation, St. Petersburg

V. P. Nesterov

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Email: peep9@yandex.ru
Russian Federation, St. Petersburg

References

  1. Darghal N, Garnier-Suillerot A, Bouchemal N, Gras G, Geraldes CF, Salerno M (2010) Accumulation of Eu3+ chelates in cells expressing or not P_glycoprotein: implications for blood_brain barrier crossing. J Inorg Biochem 104:47–54. https://doi.org/10.1016/j.jinorgbio.2009.09.026
  2. Chen YC, Huang SC, Wang YK, Liu YT, Wu TK, Chen TM (2013) Ligand-functionalization of BPEI-coated YVO4:Bi3+, Eu3+ nanophosphors for tumor-cell-targeted imaging applications. Chem Asian J 8:2652–2659. https://doi.org/10.1002/asia.201300570
  3. Jin Y, Chen S, Duan J, Jia G, Zhang J (2015) Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage. J Inorg Biochem 146:28–36. https://doi.org/10.1016/j.jinorgbio.2015.02.006
  4. Wu L, Yang F, Xue Y, Gu R, Liu H, Xia D, Liu Y (2023) The biological functions of europium-containing biomaterials: A systematic review. Mater Today Bio 19:100595. https://doi.org/10.1016/j.mtbio.2023.100595
  5. Chen S, Zhang C, Jia G, Duan J, Wang S, Zhang J (2014) Size-dependent cytotoxicity of europium doped NaYF₄ nanoparticles in endothelial cells. Mater Sci Eng C Mater Biol Appl 43:330–342. https://doi.org/10.1016/j.msec.2014.07.029
  6. Alpturk O, Rusin O, Fakayode SO, Wang W, Escobedo JO, Warner IM, Crowe WE, Kraґl V, Pruet JM, Strongin RM (2006) Lanthanide complexes as fluorescent indicators for neutral sugars and cancer biomarkers. Proc Natl Acad USA 103(26): 9756–9760. https://doi.org/10.1073/pnas.0603758103
  7. Londhe S, Patra CR (2022) Biomedical applications of europium hydroxide nanorods. Nanomedicine (Lond) 17:5–8. https://doi.org/10.2217/nnm-2021-0351
  8. Wiatrak B, Sobierajska P, Szandruk_Bender M, Jawien P, Janeczek M, Dobrzynski M, Pistor P, Szelag A, Wiglusz RJ (2021) Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage-In Vitro Study. Int J Mol Sci 22:4454. https://doi.org/10.3390/ijms22094454
  9. Alicka M, Sobierajska P, Kornicka K, Wiglusz RJ, Marycz K (2019) Lithium ions (Li+) and nanohydroxyapatite (nHAp) doped with Li+ enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with Li+ and co-doped with europium (III) and samarium (III) ions. Mater Sci Eng C Mater Biol Appl 99:1257–1273. https://doi.org/10.1016/j.msec.2019.02.073
  10. Smith DG, Pal R, Parker D (2012) Measuring equilibrium bicarbonate concentrations directly in cellular mitochondria and in human serum using europium/terbium emission intensity ratios. Chemistry 18:11604–11613. https://doi.org/10.1002/chem.201201738
  11. Sun J, Song B, Ye Z, Yuan J (2015) Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate-Europium Complex. Inorg Chem 54:11660–11668. https://doi.org/10.1021/acs.inorgchem.5b02458
  12. Liu X, Tang Z, Song B, Ma H, Yuan J (2017) A mitochondria-targeting time-gated luminescence probe for hypochlorous acid based on a europium complex. J Mater Chem B 5:2849–2855. https://doi.org/10.1039/c6tb02991d
  13. Mailhot R, Traviss-Pollard T, Pal R, Butler SJ (2018) Cationic Europium Complexes for Visualizing Fluctuations in Mitochondrial ATP Levels in Living Cells. Chemistry 24:10745–10755. https://doi.org/10.1002/chem.201801008
  14. Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect. 104(Suppl 1):85–95. https://doi.org/10.1289/ehp.96104s185
  15. Pagano G, Aliberti F, Guida M, Oral R, Siciliano A, Trifuoggi M, Tommasi F (2015) Rare earth elements in human and animal health: State of art and research priorities. Environ Res 142:215–220. https://doi.org/10.1016/j.envres.2015.06.039
  16. Das T, Sharma A, Talukder G (1988) Effects of lanthanum in cellular systems. A review. Biol Trace Elem Res 18:201–228. https://doi.org/10.1007/BF02917504
  17. Korotkov SM, Sobol KV, Shemarova IV, Furaev VV, Shumakov AR, Nesterov VP (2016) A comparative study of the effects of Pr3+ and La3+ ions on calcium dependent processes in frog cardiac muscle and rat heart mitochondria. Biophysics 61:733–740. https://doi.org/10.1134/S0006350916050122
  18. Коротков СМ, Соболь КВ, Шемарова ИВ, Новожилов АВ, Никитина ЕР, НестеровВ ВП (2020). Влияние Gd3+ и Ca2+ на сократимость сердечной мышцы лягушки и дыхание, набухание и потенциал внутренней мембраны митохондрий сердца крысы. ЖЭБФ 56:99–106. [Korotkov SM, Sobol KV. Schemarova IV, Novozhilov AV, Nikitina ER Nesterov VP (2020) Effects of Gd3+ and Ca2+ on frog heart muscle contractility and respiration, swelling and inner membrane potential of rat heart mitochondria. J Evol Biochem Phys 56: 99–106. (In Russ)]. https://doi.org/10.31857/S0044452920060054
  19. Korotkov SM, Sobol KV, Novozhilov AV, Nesterov VP (2022) Effect of Eu3+ on Calcium-Dependent Processes in Vertebrate Myocardium. J Evol Biochem Phys 58(Suppl 1): S52–S62. https://doi.org/10.1134/S0022093022070067
  20. Joshi NB, Shamoo AE (1987) Binding of Eu3+ to cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase-laser excited Eu3+ spectroscopic studies. Biophys J 51:185–191. https://doi.org/10.1016/S0006-3495(87)83324-6.
  21. Sárközi S, Komáromi I, Jóna I, Almássy J (2017) Lanthanides Report Calcium Sensor in the Vestibule of Ryanodine Receptor. Biophys J 112:2127–2137. https://doi.org/10.1016/j.bpj.2017.03.023
  22. Mead RH, Clusin WT (1985) Paradoxical electromechanical effect of lanthanum ions in cardiac muscle cells. Biophys J 48:695–700. https://doi.org/10.1016/S0006-3495(85)83827-3
  23. Kawata H, Ohba M, Hatae J, Kishi M (1983) Paradoxical after-potentiation of the myocardial contractility by lanthanum. Jpn J Physiol 33:1–17. https://doi.org/10.2170/jjphysiol.33.1
  24. Magyar ZÉ, Bauer J, Bauerová-Hlinková V, Jóna I, Gaburjakova J, Gaburjakova M, Almássy J (2023) Eu3+ detects two functionally distinct luminal Ca2+ binding sites in ryanodine receptors. Biophys J 122: 3516–3531. https://doi.org/10.1016/j.bpj.2023.07.029
  25. Rumberger E, Reichel H (1972) The force-frequency relationship: a comparative study between warm- and cold-blooded animals. Pflug Arch Eur J Physiol 332: 206–217.
  26. Hatae J (1982) Effects of lanthanum on the electrical and mechanical activities of frog ventricular muscle. Jpn J Physiol 32:609-625. https://doi.org/10.2170/jjphysiol.32.609
  27. Nathan RD, Kanai K, Clark RB, Giles W (1988) Selective block of calcium current by lanthanum in single bullfrog atrial cells. J Gen Physiol 91:549–572. https://doi.org/10.1085/jgp.91.4.549
  28. Shimizu H, Borin ML, Blaustein MP (1997) Use of La3+ to distinguish activity of the plasmalemmal Ca2+ pump from Na+/Ca2+ exchange in arterial myocytes. Cell calcium 21:31–41. https://doi.org/10.1016/s0143-4160(97)90094-4
  29. Peeters GA, Kohmoto O, Barry WH (1989) Detection of La3+ influx in ventricular cells by indo-1 fluorescence. Am J Physiol 256:C351–C357. https://doi.org/10.1152/ajpcell.1989.256.2.C351
  30. Fujimori T, Jencks WP (1990) Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. J Biol Chem 265: 16262–16270.
  31. Zhang YH, Hancox JC (2000) Gadolinium inhibits Na+-Ca2+ exchanger current in guinea-pig isolated ventricular myocytes. Br J Pharmacol 130:485–488. https://doi.org/10.1038/sj.bjp.0703353
  32. Trosper TL, Philipson KD (1983) Effects of divalent and trivalent cations on Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta 731:63–68. https://doi.org/10.1016/0005-2736(83)90398-x
  33. Zha X, Morrison GH (1995) Ion microscopy evidence that La3+ releases Ca2+ from Golgi complex in LLC-PK1 cells. Am J Physiol 269(4 Pt 1):C923–C928. https://doi.org/10.1152/ajpcell.1995.269.4.C923
  34. Langer GA, Frank JS (1972) Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol 54:441–455. https://doi.org/10.1083/jcb.54.3.441
  35. Sanborn WG, Langer GA (1970) Specific uncoupling of excitation and contraction in mammalian cardiac tissue by lanthanum. J Gen Physiol 56:191–217. https://doi.org/10.1085/jgp.56.2.191
  36. Andersson KE, Edman KA (1974) Effects of lanthanum on the coupling between membrane excitation and contraction of isolated frog muscle fibres. Acta Physiol Scand 90:113–123. https://doi.org/10.1111/j.1748-1716.1974.tb05569.x
  37. Meiri H, Shimoni Y (1991) Effects of aluminium on electrical and mechanical properties of frog atrial muscle. Br J Pharmacol 102:483–491. https://doi.org/10.1111/j.1476-5381.1991.tb12198.x
  38. Miller TW, Tormey JM (1993) Calcium displacement by lanthanum in subcellular compartments of rat ventricular myocytes: characterisation by electron probe microanalysis. Cardiovasc Res 27:2106–2112. https://doi.org/10.1093/cvr/27.12.2106
  39. Ottolia M, Torres N, Bridge JH, Philipson KD, Goldha ber JI (2013) Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol 61:28–33. https://doi.org/10.1016/j.yjmcc.2013.06.001
  40. Turra C (2018) Sustainability of rare earth elements chain: from production to food – a review. Int J Environ Health Res 28:23–42. https://doi.org/10.1080/09603123.2017.1415307

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of two different concentrations of Eu3+ (0.2 mM and 1 mM) on the contractions of the frog atria at a temperature of the washing solution of 20°C. (a) – the complete scheme of the experiment is shown; (b) – single contractions corresponding to contractions marked with black circles in the complete scheme of the experiment. W – washing of the atria from Eu3+. The concentrations of Eu3+ and the duration of incubation with Eu3+ are marked with a horizontal line under the contractions. The horizontal marks in the upper right indicate time in min (a), milliseconds (b). The force developed by the atria is calibrated with a vertical mark in milliNewtons (mN).

Download (176KB)
3. Fig. 2. Effect of NaN3 on frog atrial contractions at a washing solution temperature of 20°C. Shown are the complete experimental schemes (a, c) and the corresponding single contractions (b, d), marked with black circles on the complete experimental scheme. (a) – control contraction, (c) – contraction after application of 0.2 mM Eu3+; 20 min after washing the atrium from 0.2 mM Eu3+, 1 mM NaN3 was added. The concentration of NaN3 and the duration of incubation with NaN3 are marked with a horizontal line under the contractions. The horizontal marks in the upper right indicate time, seconds (a, c), milliseconds (b, d). The force developed by the atria is calibrated with a vertical mark (mN).

Download (367KB)
4. Fig. 3. Effect of Eu3+ and Ca2+ on the rate of oxygen consumption by rat heart mitochondria. Mitochondria (1 mg/ml protein) were added to the medium containing 125 mM KCl, 20 mM Tris-MOPS (pH 7.3) and 3 mM Tris-PO4, as well as (where indicated) 10 mM glutamate with 2 mM malate (G+M), 5 mM succinate with 2 μM rotenone (Succ), 50 μM Eu3+ (Eu3+) and 200 μM Ca2+ (Ca2+). The ordinate axis shows the rates of oxygen consumption (nmol O2/min/mg protein) in state 3 and state 3RDNP. To induce state 3 and state 3UDNP, the substances were successively added to the medium containing energized rat heart mitochondria to concentrations of 130 μM ADP and 30 μM DNP. State 3 and State 3UDNP are shown under the abscissa. Asterisks mark significant differences from the control, experiments without Eu3+ and Ca2+ (p < 0.05, paired t-test). The average results for three independent experiments are presented.

Download (218KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».