Effect of hypernatremia on protein reabsorption in renal proximal tubules of the lake frog Pelophylax ridibundus

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Protein reabsorption in the kidney proximal tubules occurs simultaneously with the transport of ions and water, but little is known about the dependence of receptor-mediated protein endocytosis on water-salt balance changes. The aim of the study was to investigate tubular reabsorption and intracellular vesicular transport of various proteins in a model of hypernatremia in lake frogs (Pelophylax ridibundus). Frogs were injected with hypertonic sodium chloride solution (0.75 M NaCl) 1 hour before injection of green or yellow fluorescent proteins (GFP or YFP), as well as lysozyme. The method of fluorescent immunohistochemistry was used for detection of lysozyme and endocytic receptor megalin in kidney sections. Specimens were investigated using laser scanning confocal microscopy. The intensity of fluorescent signals of proteins and megalin in proximal tubular cells was determined on the images obtained. To study the dynamics of endocytosis, an automated method for quantifying colocalized protein and megalin signals was used. A statistically significant decrease in the reabsorption of GFP, YFP and lysozyme in the proximal tubules after 0.75 M of NaCl injection was found. The accumulation of proteins in the early endocytic compartment and decrease in their entry into late endosomes and lysosomes are shown, that is considered as evidence of a delay in intracellular vesicular transport in hypernatremia. The data obtained were analyzed in connection with changes in blood parameters and kidney activity during osmoregulation, and also with the role of chloride channels in receptor-mediated protein endocytosis. It can be assumed that increased ion transport in the proximal tubules cells in hypernatremia leads to decreased reabsorption capacity of epitheliocytes and delayed intracellular transport of proteins.

全文:

受限制的访问

作者简介

N. Prutskova

Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

编辑信件的主要联系方式.
Email: natprut@yandex.ru
俄罗斯联邦, St.-Petersburg

E. Seliverstova

Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: natprut@yandex.ru
俄罗斯联邦, St.-Petersburg

参考

  1. Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. Ilar J 48 (3): 260–269. https://doi.org/10.1093/ilar.48.3.260
  2. Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflügers Arch 458 (6): 1039–1048. https://doi. org/10.1007/s00424-009-0685-8
  3. Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Research 20: 256–275. https://doi.org/10.1038/cr.2010.19
  4. De S, Kuwahara S, Saito A (2014) The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. Membranes 4 (3): 333–355. https://doi.org/10.3390/membranes4030333
  5. Moestrup SK, Verroust PJ (2001) Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu Rev Nutr 21: 407–428. https://doi.org/10.1146/annurev.nutr.21.1.407
  6. Christensen E, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3 (4):258–267. https://doi.org/10.1038/nrm778
  7. Saito A, Sato H, Iino N, Takeda T (2010) Molecular mechanisms of receptor-mediated endocytosis in the renal proximal tubular epithelium. J Biomed Biotechnol 2010: 403272. https://doi.org/10.1155/2010/403272
  8. Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27 (4): 223–236. https://doi.org/10.1152/physiol.00022.2012
  9. Anzenberger U, Bit-Avragim N, Rohr S, Rudolph F, Dehmel B, Willnow TE, Abdelilah-Seyfried S (2006) Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J Cell Sci 119: 2127–2137. https://doi.org/10.1242/jcs.02954
  10. Christensen E, Raciti D, Reggiani L, Verroust PJ, Brändli AW (2008) Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflügers Arch 456 (6): 1163–1176. https://doi.org/10.1007/s00424-008-0488-3
  11. Seliverstova EV, Romanova IV, Prutskova NP (2021) Molecular determinants of protein reabsorption in the amphibian kidneys. Acta Histochem 123 (6): 151760. https://doi.org/10.1016/j.acthis.2021.151760
  12. Prutskova NP, Seliverstova EV (2013) Absorption capacity of renal proximal tubular cells studied by combined injections of YFP and GFP in Rana temporaria L. Comp Biochem Physiol A 166: 138–146. https://doi.org/10.1016/j.cbpa.2013.05.022
  13. Seliverstova EV, Prutskova NP (2015) Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria. Eur J Histochem 59 (2): 2482. https://doi.org/10.4081/ejh.2015.2482
  14. Dantzler WH (2016) Transport of Inorganic Ions by Renal Tubules. In: Comparative Physiology of the Vertebrate Kidney. Springer, NY: 81–157. https://doi.org/10.1007/978-1-4939-3734-9_4
  15. Uchiyama M, Konno N (2006) Hormonal regulation of ion and water transport in anuran amphibians. Gen Comp Endocrinol 147 (1): 54–61. https://doi.org/10.1016/j.ygcen.2005.12.018
  16. Hunter M, Horisberger JD, Stanton B, Giebisch G (1987) The collecting tubule of Amphiuma. I. Electrophysiological characterization. Am J Physiol Renal Physiol 253: F1263–F1272. . https://doi.org/10.1152/ajprenal.1987.253.6.F1263
  17. Stoner LC, Engbretson BG, Viggiano SC, Benos DJ, Smith PR (1995) Amiloride-sensitive apical membrane sodium channels of everted Ambystoma collecting tubule. J Membr Biol 144 (2): 147–156. https://doi.org/10.1007/BF00232800
  18. Konno N, Hyodo S, Yamada T, Matsuda K, Uchiyama M (2007) Immunolocalization and mRNA expression of the epithelial Na+ channel α-subunit in the kidney and urinary bladder of the marine toad, Bufo marinus, under hyperosmotic conditions. Cell Tissue Res 328 (3): 583–594. https://doi.org/10.1007/s00441-007-0383-9
  19. Kumano T, Konno N, Wakasugi T, Matsuda K, Yoshizawa H, Uchiyama M (2008) Cellular localization of a putative Na(+)/H(+) exchanger 3 during ontogeny in the pronephros and mesonephros of the Japanese black salamander (Hynobius nigrescens Stejneger). Cell Tissue Res 331: 675–685. https://doi.org/10.1007/s00441-007-0544-x
  20. Schmieder S, Lindenthal S, Ehrenfeld J (2002) Cloning and characterisation of amphibian ClC-3 and ClC-5 chloride channels. Biochim Biophys Acta 1566 (1–2): 55–66. https://doi.org/10.1016/s0005-2736(02)00594-1
  21. Jentsch TJ (2015) Discovery of CLC transport proteins: cloning, structure, function, and pathophysiology. J Physiol 593 (18): 4091–4109. https://doi.org/10.1113/JP270043
  22. Günter W, Lüchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95 (14): 8075–8080. https://doi.org/10.1073/pnas.95.14.8075
  23. Schwake M, Friedrich T, Jentsch TJ (2001) An internalization signal in ClC-5, an endosomal Cl-channel mutated in Dent's disease. J Biol Chem 276 (15): 12049–12054. https://doi.org/10.1074/jbc.M010642200
  24. Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100 (14): 8472–8477. https://doi.org/10.1073/pnas.1432873100
  25. Ferreira HG, Jesus CH (1973) Salt adaptation in Bufo bufo. J Physiol 228 (3): 583–600. https://doi.org/10.1113/jphysiol.1973.sp010101
  26. Katz U (1989) Strategies of adaptation to osmotic stress in anuran Amphibia under salt and burrowing conditions. Comp Biochem Physiol A 93 (3): 499–503. https://doi.org/10.1016/0300-9629(89)90001-7
  27. Scheer BT, Mumbach MW (1982) Fluxes of sodium ion in frogs (Rana esculenta) acclimated to solutions of NaCl in lake water and effects of hypophysectomy. Comp Biochem Physiol 72A (3): 549–558. https://doi.org/10.1016/0300-9629(82)90121-9
  28. Pang PKT (1977) Osmoregulatory functions of neurohypophysial hormones in fishes and amphibians. Amer Zool 17: 739–749. https://doi.org/10.1093/icb/17.4.739
  29. Nouwen EJ, Kühn ER (1985) Volumetric control of arginine vasotocin and mesotocin release in the frog (Rana ridibunda). J Endocrinol 105 (3): 371–377. https://doi.org/10.1677/joe.0.1050371
  30. Muir TJ, Costanzo JP, Lee RE Jr (2007) Osmotic and metabolic responses to dehydration and urea-loading in a dormant, terrestrially hibernating frog. J Comp Physiol B177 (8): 917–926. https://doi.org/10.1007/s00360-007-0190-3
  31. Prutskova NP, Seliverstova EV, Kutina AV (2023) Effect of changes in water-salt balance on ion- and osmoregulatory renal functions in the lake frog. Lab Animal Sci 3: 44–53. https://doi.org/10.57034/2618723X-2023-03-03
  32. Gburek J, Birn H, Verroust PJ, Goj B, Jacobsen C, Moestrup SK, Willnow TE, Christensen EI (2003) Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin Am J Physiol Renal Physiol 285 (3): F451–F458. https://doi.org/10.1152/ajprenal.00062
  33. Lee D, Gleich K, Fraser SA, Katerelos M, Mount PF, Power DA (2013) Limited capacity of proximal tubular proteolysis in mice with proteinuria. Am J Physiol Renal Physiol 304: F1009–F1019. https://doi.org/10.1152/ajprenal.00601.2012
  34. Schnermann J, Wahl M, Liebau G, Fischbach H (1968) Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate. Pflugers Arch 304: 90–103. https://doi.org/10.1007/BF00586722
  35. Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16: 251–270. https://doi.org/10.1038/ki.1979.128
  36. Cojocel C, Maita K, Baumann K, Hook JB (1984) Renal processing of low molecular weight proteins. Pflügers Arch 401 (4): 333–339. https://doi.org/10.1007/bf00584332
  37. Lazzara MJ, Deen WM (2007) Model of albumin reabsorption in the proximal tubule. Am J Physiol Renal Physiol 292 (1): F430–F439. https://doi.org/10.1152/ajprenal.00010.2006
  38. Smithies O (2003) Why the kidney glomerulus does not clog: A gel permeation/diffusion hypothesis of renal function. PNAS100: 4108–4113. https://doi.org/10.1073/pnas.0730776100
  39. Prutskova NP, Seliverstova EV (2011) Tubular GFP uptake pattern in the rat and frog kidneys. Comp Biochem Physiol A 160: 175–183. https://doi.org/10.1016/j.cbpa.2011.05.029
  40. Pohl M, Shan Q, Petsch T, Styp-Rekowska B, Matthey P, Bleich M, Bachmann S, Theilig F (2015) Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance. J Am Soc Nephrol 26: 1269–1278. https://doi.org/10.1681/ASN.2014020148
  41. Günter W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse – an animal model for Dent's disease. Pflugers Arch – Eur J Physiol 445: 456–462. https://doi.org/10.1007/s00424-002-0950-6
  42. Sakamoto H, Sado Y, Naito I, Kwon TH, Inoue S, Endo K, Kawasaki, M, Uchida S, Nielsen S, Sasaki S, Marumo F (1999) Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: Colocalization with H+-ATPase. Am J Physiol 277 (6): F957–F965. https://doi.org/10.1152/ajprenal.1999.277.6.F957
  43. Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ (2009) Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J 23 (12): 4056–4068. https://doi.org/10.1096/fj.09–130880
  44. Stauber T, Jentsch TJ (2013) Chloride in vesicular trafficking and function. Annu Rev Physiol 75: 453–477. https://doi.org/10.1146/annurev-physiol-030212–183702
  45. Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328 (5984): 1398–1401. https://doi.org/10.1126/science.1188070

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Reabsorption of GFP, YFP and lysozyme in megalin-immunopositive renal proximal tubules of marsh frogs. (a–f) – profiles of proximal tubules in control (a–e) and after preliminary administration of NaCl (f). Signals: megalin-Alexa 568 – red, GFP, YFP and lysozyme-Alexa 488 – green and colocalized fluorescence – yellow-orange. The presence of proteins in most megalin-positive tubules (a–c), formation of numerous GFP-containing vesicles (d), vesicular and diffuse fluorescence of lysozyme (e, f) and accumulation of lysozyme in the brush border of epithelial cells (f) are visible. Confocal microscopy, merged images. Calibration: 50 µm.

下载 (662KB)
3. Fig. 2. Decreased reabsorption of GFP, YFP, and lysozyme in the proximal tubules of frog kidneys after preliminary administration of NaCl. Ordinate axis: fluorescence intensity in individual frogs (arbitrary units), on the left – GFP (circles) and YFP (triangles), on the right – lysozyme (diamonds); light symbols – control, dark symbols – after injection of 0.75 M NaCl; black line – median. Significance of differences compared to the control: * – p < 0.05, ** – p < 0.01 (Mann–Whitney T-test).

下载 (104KB)
4. Fig. 3. Examples of automated quantification and visualization of colocalized fluorescent signals. (a) GFP (green), megalin (red), and signal colocalization (yellow-orange) in the proximal tubule epithelium of the control. Confocal microscopy, merged images. Calibration: 50 μm. (b) – Dot plot for the image shown in (a). Abscissa and ordinate axes: fluorescence intensity of pixels in the red and green spectral regions, respectively (in arbitrary units). Pixels with overlapping signals are colored yellow-orange; dotted lines are the thresholds separating visible fluorescence from dark pixels. (c) and (d) – the same as (a) and (b) for the variant with the introduction of 0.75 M NaCl. An increase in colocalization of both signals is visible compared to the control.

下载 (650KB)
5. Fig. 4. Effect of 0.75 M NaCl injections on reabsorption and intracellular transport of GFP, YFP, and lysozyme in the proximal tubules of lake frog kidneys. (a) Evaluation of colocalization of injected proteins with megalin in the tubular epithelium. Ordinate axis: colocalized protein (in % of the total amount of reabsorbed protein) in individual frogs (circles) in the control and after 0.75 M NaCl injection. Black line is the median. (b) Ratio of colocalized protein (dark bars) to non-colocalized protein (light bars) in the same experiments. Data are presented as M ± SEM. Significance of differences in (a) and (b): * – p < 0.05, ** – p < 0.01 compared to the control (Mann–Whitney T-test).

下载 (200KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».