Features of the humoral immune response when using protein immobilized on the surface of nano- and microparticles based on poly(lactic acid)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study is aimed at evaluating the influence of composition and size of micro- and nanoparticles (MPs and NPs) on the immunogenicity of protein antigen associated with them. For comparative analysis, MPs and NPs based on poly(lactic acid) (PLA) and block copolymer of poly(ethylene glycol) with poly(lactic acid) (PEG-b-PLA) were obtained. Recombinant human beta2-microglobulin fusion protein with superfolder green fluorescent protein (β2M-sfGFP) was used for covalent modification of all types of polymer particles. Immobilization of the model protein β2M-sfGFP was carried out on the surface of the particles through the reaction of activated esters with the amino groups of the protein. Immunization of mice using complex antigen (β2M-sfGFP protein immobilized on the surface of MPs and NPs of different compositions) was carried out in four steps. Immunogenicity was assessed by the level of specific antibodies to sfGFP using enzyme-linked immunoassay. The results showed a significant increase in antibody levels in the control groups, which were immunized with a mixture of model protein and particles of different nature and sizes, compared to the experimental groups, which were immunized with conjugates of the corresponding particles with model protein. In the experimental groups, the highest number of specific antibodies was detected in the case of immunization of mice with the conjugate of protein and PLA or PEG-b-PLA-based NPs. The introduction of PEG block into the PLA composition did not significantly affect the immunogenicity of the protein, while the particle size was of significant importance. PLA- or PEG-b-PLA-based NPs showed higher immunogenicity compared to MPs of the same compositions, which can be used for practical purposes to develop vaccines (NP-protein) or ” trapping systems” (MP-protein) that bind infiltrating viruses.

Full Text

Restricted Access

About the authors

R. G. Sakhabeev

St. Petersburg State Technological Institute (Technical University)

Author for correspondence.
Email: helm505@mail.ru
Russian Federation, St. Petersburg

D. S. Polyakov

Institute of Experimental Medicine

Email: helm505@mail.ru
Russian Federation, St.-Petersburg

E. S. Sinitsyna

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: helm505@mail.ru
Russian Federation, St. Petersburg

V. A. Korzhikov-Vlakh

Institute of Macromolecular Compounds, Russian Academy of Sciences; Saint-Petersburg State University

Email: helm505@mail.ru
Russian Federation, St. Petersburg; St. Petersburg

I. O. Bagaeva

Saint-Petersburg State University

Email: helm505@mail.ru
Russian Federation, St. Petersburg

E. G. Korzhikova-Vlakh

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: helm505@mail.ru
Russian Federation, St. Petersburg

T. P. Ses

First Pavlov State Medical University Of St Petersburg

Email: helm505@mail.ru
Russian Federation, St. Petersburg

V. S. Tereshina

St. Petersburg State Technological Institute (Technical University)

Email: helm505@mail.ru
Russian Federation, St. Petersburg

M. M. Shavlovsky

Institute of Experimental Medicine

Email: helm505@mail.ru
Russian Federation, St.-Petersburg

References

  1. Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S (2021) Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 13:2022. https://doi.org/10.3390/polym13122022
  2. Kaba SA, Brando C, Guo Q, Mittelholzer C, Raman S, Tropel D, Aebi U, Burkhard P, Lanar DE (2009) A Nonadjuvanted Polypeptide Nanoparticle Vaccine Confers Long-Lasting Protection against Rodent Malaria. J Immunol 183:7268–7277. https://doi.org/10.4049/jimmunol.0901957
  3. Cappellano G, Abreu H, Casale C, Dianzani U, Chiocchetti (2021) Nano-Microparticle Platforms in Developing Next-Generation Vaccines. Vaccines 9:606. https://doi.org/10.3390/vaccines9060606
  4. Polyakov D, Sinitsyna E, Grudinina N, Antipchik M, Sakhabeev R, Korzhikov-Vlakh V, Shavlovsky M, Korzhikova-vlakh E, Tennikova T (2021) Polymer Particles Bearing Recombinant LEL CD81 as Trapping Systems for Hepatitis C Virus. Pharmaceutics 13: 672. https://doi.org/10.3390/pharmaceutics1305067
  5. Guryanov I, Cipriani S, Fiorucci S, Zashikhina N, Marchianò S, Scarpelli P, Korzhikov-Vlakh V, Popova E, Korzhikova-Vlakh E, Biondi B, Formaggio F, Tennikova T (2017) Nanotraps with biomimetic surface as decoys for chemokines. Nanomedicine Nanotechnology, Biol Med 13:2575–2585. https://doi.org/10.1016/j.nano.2017.07.006
  6. Bajracharya R, Song JG, Patil BR, Lee SH, Noh H-M, Kim D-H, Kim G-L, Seo S-H, Park J-W, Jeong SH, Lee CH, Han H-K (2022) Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 29:1959–1970. https://doi.org//10.1080/10717544.2022.2089296
  7. Islam Y, Leach AG, Smith J, Pluchino S, Coxonl CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T (2020) Peptide based drug delivery systems to the brain. Nano Express 1:012002. https://doi.org/10.1088/2632-959X/ab9008
  8. Sinyakov MS, Dror M, Lublin-Tennenbaum T, Salzberg S, Margel S, Avtalion RR (2006) Nano- and microparticles as adjuvants in vaccine design: Success and failure is related to host natural antibodies. Vaccine 24:6534–6541. https://doi.org/10.1016/j.vaccine.2006.06.021
  9. Jiskoot W, van Schie RMF, Carstens MG, Schellekens H (2009) Immunological Risk of Injectable Drug Delivery Systems. Pharm Res 26:1303–1314. https://doi.org/10.1007/s11095-009-9855-9
  10. Alqahtani MS, Syed R, Alshehri M (2020) Size-Dependent Phagocytic Uptake and Immunogenicity of Gliadin Nanoparticles. Polymers (Basel) 12:2576. https://doi.org/10.3390/polym12112576
  11. Baranov M V., Kumar M, Sacanna S, Thutupalli S, van den Bogaart G (2021) Modulation of Immune Responses by Particle Size and Shape. Front Immunol 11:607945. https://doi.org/10.3389/fimmu.2020.607945
  12. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys 49:832–864. https://doi.org/10.1002/polb.22259
  13. Seyednejad H, Ghassemi AH, Van Nostrum CF, Vermonden T, Hennink WE (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 152:168–176. https://doi.org/10.1016/j.jconrel.2010.12.016
  14. Lee D, Rejinold N, Jeong S, Kim Y-C (2018) Stimuli-Responsive Polypeptides for Biomedical Applications. Polymers (Basel) 10:830. https://doi.org/10.3390/polym10080830
  15. Farasati Far B, Naimi-Jamal MR, Safaei M, Zarei K, Moradi M, Yazdani Nezhad H (2022) A Review on Biomedical Application of Polysaccharide-Based Hydrogels with a Focus on Drug Delivery Systems. Polymers (Basel) 14:5432. https://doi.org/10.3390/polym14245432
  16. Butcher NJ, Mortimer GM, Minchin RF (2016) Unravelling the stealth effect. Nat Nanotechnol 11:310–311. https://doi.org/10.1038/nnano.2016.6
  17. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99(Pt A):28–51. https://doi.org/10.1016/j.addr.2015.09.012.
  18. Romberg B, Metselaar J, Baranyi L, Snel C, Bunger R, Hennink W, Szebeni J, Storm G (2007) Poly(amino acid)s: Promising enzymatically degradable stealth coatings for liposomes. Int J Pharm 331:186–189. https://doi.org/10.1016/j.ijpharm.2006.11.018
  19. Wang Yan, Wen Qu, Choi H Stephanie (2016) FDA’s Regulatory Science Program for Generic PLA/ PLGA-Based Drug Products. Am Pharm Rev June 15:188841.
  20. Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 2019 494 49:347–380. https://doi.org/10.1007/s40005-019-00439-x
  21. Sinitsyna E, Bagaeva I, Gandalipov E, Fedotova E, Korzhikov-Vlakh V, Tennikova T, Korzhikova-Vlakh E (2022) Nanomedicines Bearing an Alkylating Cytostatic Drug from the Group of 1,3,5-Triazine Derivatives: Development and Characterization. Pharmaceutics 14:2506. https://doi.org/10.3390/pharmaceutics14112506
  22. Korzhikov-Vlakh V, Averianov I, Sinitsyna E, Nashchekina Y, Polyakov D, Guryanov I, Lavrentieva A, Raddatz L, Korzhikova-Vlakh E, Scheper T, Tennikova T (2018) Novel Pathway for Efficient Covalent Modification of Polyester Materials of Different Design to Prepare Biomimetic Surfaces. Polymers (Basel) 10:1299. https://doi.org/10.3390/polym10121299
  23. Solovyov KV., Polyakov DS, Grudinina NA, Egorov V V., Morozova I V., Aleynikova TD, Shavlovsky MM (2011) Expression in E. coli and purification of the fibrillogenic fusion proteins ttr-sfgfp and β2M-sfGFP. Prep Biochem Biotechnol 41:337–349. https://doi.org/10.1080/10826068.2010.548433
  24. Polyakov DS, Antimonova OI, Sakhabeev RG, Grudinina NA, Khodova AE, Sinitsyna ES, Korzhikov-Vlakh VA, Tennikova TB, Shavlovsky M (2017) Poly(lactic acid) nanoparticles influence on immunogenicity of the protein bound with them. Russ J Infect Immun 7: 123–129. https://doi.org/10.15789/2220-7619-2017-2-123-129.
  25. Сахабеев РГ, Поляков ДС, Грудинина НА, Антимонова ОИ, Коржиков-Влах ВА, Аликпарова ЭР, Синицына ЕС, Шавловский ММ (2023) Фагоцитоз иммунными клетками полимерных микрочастиц, модифицированных белками. Цитология 65:376–383. [Sakhabeev RG, Polyakov DS, Grudinina NA, Antimonova OI, Korzhikov-Vlakh VA, Alikparova ER, Sinitsyna ES, Shavlovsky MM (2023) Phagocytosis of protein-modified polymer microparticles by immune cells. Cytology 65:376–383. (In Russ)]. https://doi.org/10.31857/S0041377123040119
  26. Сахабеев РГ, Поляков ДС, Грудинина НА, Вишня АА, Козловская АА, Синицына ЕС, Коржиков-Влах ВА, Тенникова ТБ, Шавловский ММ (2019) Гуморальный иммунный ответ на антиген, иммобилизованный на наночастицах из сополимера поли(молочной кислоты) и полиэтиленгликоля. Мол мед 17:32–36. [Sakhabeev RG, Polyakov DS, Grudinina NA, Vishnya AA, Kozlovskaia AA, Sinitsyna ES, Korzhikov-Vlakh VA, Tennikova TB, Shavlovsky MM (2019) The humoral immune response to the antigen immobilized on nanoparticles of copolymer of polylactic acid and polyethylene glycol. Mol med 17:32–36. (In Russ)]. https://doi.org/10.29296/24999490-2019-03-06
  27. Сахабеев РГ, Поляков ДС, Гошина АД, Вишня АА, Кудрявцев ИВ, Синицына ЕС, Коржиков-Влах ВА, Тенникова ТБ, Шавловский ММ (2021) Усиление специфического Т-клеточного иммунного ответа при иммобилизации антигена на микро- и наночастицах. Инф иммун 11(4):777–783. [Sakhabeev RG, Polyakov DS, Goshina AD, Vishnya AA, Kudryavtsev IV, Sinitcina ES, Korzhikov-Vlakh VА, Tennikova TB, Shavlovsky MM (2021) Enhancing the specific T cell immune response against micro- and nanoparticle immobilized antigen. Russ J Infect Immun 11(4):777–783. (In Russ)]. https://doi.org/10.15789/2220-7619-ETS-1374

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the experiment to study the immunogenicity of the β2M-sfGFP protein as part of complex antigens with NPs and MPs based on PMC and PEG-b-PMC.

Download (186KB)
3. Fig. 2. Trends in changes in the level of specific antibodies against a model protein in the blood serum of mice immunized with antigens of different composition and size (optical densities of solutions within each period were measured at the same dilution of blood serum).

Download (139KB)
4. Fig. 3. Evaluation of the relative content of specific antibodies after administration of the antigen located on the surface of micro- and nanoparticles based on poly(lactic acid) in all four immunizations. Data are presented as mean values ​​with confidence intervals. ● – Conjugate of protein with PLA NPs; ▲ – Mixture of protein with PLA NPs; ■ – Conjugate of protein with PLA MPs; + – Mixture of protein with PLA MPs.

Download (73KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies