Effect of hypoxia on amino acid content in haemolymph and protein hydrolysate of the bivalve mollusk Anadara kagoshimensis (Tokunaga, 1906)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Anadara kagoshimensis (Tokunaga, 1906) is a bivalve alien species of the Black Sea and of the Azov Sea. The amino acid composition of hemolymph and protein hydrolysates of the mollusc soft tissues was studied. The content of 16 proteinogenic amino acids in the samples was determined by ion-exchange chromatography followed by ninhydrin detection. High concentrations of histidine and proline were observed in the hemolymph and soft tissues of the mollusc. Experimental hypoxia revealed qualitative and quantitative changes in the content of free amino acids in both hemolymph and soft tissue hydrolysates. In particular, the pool of aliphatic amino acids decreased twice and the pool of aromatic amino acids increased. The mass fraction of soft tissues almost halved under hypoxia, compared to normal conditions, which corresponded to 4.7% in the experiment and 8.2% in the control. This leads to a deterioration of the hydrolysates in total and amine nitrogen as well as in dry matter (0.34 and 1.84% of dry matter in hypoxia and normoxia). It has been shown that the metabolism of molluscs is reorganized under hypoxic conditions towards anaerobic catabolism of amino acids and proteins as a source of substrates for the citric acid and ornithine cycles. This leads to a significant accumulation of arginine, which is an allosteric activator of ornithine cycle reactions, and an accumulation of urea, which is a low-molecular-weight antioxidant. Thus, a low-molecular-weight part of the antioxidant defense system in the form of a high content of free radical scavengers like histidine and urea is formed in A. kagoshimensis, which may contribute to the success of the invasion of this mollusc in the Black Sea and of the Azov Sea. The issues of the influence of hypoxia on the quality of shellfish as raw materials for obtaining dietary supplements are considered.

Full Text

Restricted Access

About the authors

N. A. Golub

Kovalevsky Institute of Biology of the Southern Seas, RAS

Author for correspondence.
Email: ngolub66@gmail.com
Russian Federation, Sevastopol

A. A. Soldatov

Kovalevsky Institute of Biology of the Southern Seas, RAS

Email: ngolub66@gmail.com
Russian Federation, Sevastopol

V. I. Ryabushko

Kovalevsky Institute of Biology of the Southern Seas, RAS

Email: ngolub66@gmail.com
Russian Federation, Sevastopol

A. V. Kuznetsov

Kovalevsky Institute of Biology of the Southern Seas, RAS

Email: ngolub66@gmail.com
Russian Federation, Sevastopol

V. P. Kurchenko

Belarusian State University

Email: ngolub66@gmail.com
Belarus, Minsk

E. V. Budkevich

North Caucasian Federal University

Email: ngolub66@gmail.com
Russian Federation, Stavropol

References

  1. Katsanevakis S, Gatto F, Zenetos A, Cardoso AC (2013) How many marine aliens in Europe? Management Biol Invas 4(1):37–42. https://doi.org/ 10.3391/mbi.2013.4.1.05
  2. Киселева МИ (1992) Сравнительная характеристика донных сообществ у берегов Кавказа. / Заика ВЕ, Киселева МИ, Михайлова ТВ и др. Многолетние изменения зообентоса Черного моря. Киев: Наук. думка. 84–99. [Kiseleva MI (1992) Comparative characteristics of bottom communities off the coast of the Caucasus. Long-term changes of the Black Sea zoobenthos. Kiev. Nauk. Dumka. 84–99. (In Russ)].
  3. Анистратенко ВВ, Халиман ИА (2006) Двустворчатый моллюск Anadara inaequivalvis (Bivalvia, Arcidae) в северной части Азовского моря: завершение колонизации Азово-Черноморского бассейна. Вестник зоологии 40(6):505–511. [Anistratenko VV, Haliman IA (2006) Bivalve mollusc Anadara inaequivalvis (Bivalvia, Arcidae) in the Northern Part of the Sea of Azov: Completion of Colonization of the Azov-Black Sea Basin. Vestnik zoologii 40(6):505–511. (In Russ)].
  4. Krapal AM, Popa OP, Levarda AF, Iorgu EI, Costache M, Crocetta F, Popa LO (2014) Molecular confirmation on the presence of Anadara kagoshimensis (Tokunaga, 1906) (Mollusca: Bivalvia: Arcidae) in the Black Sea. Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa” 57(1):9–12. https://doi.org/:10.2478/travmu-2014-0001
  5. Sahin C, Emiral H, Okumus I, Mutlu Gozler A (2009) The Benthic Exotic Species of the Black Sea: Blood Cockle (Anadara inaequivalvis, Bruguiere, 1789: Bivalve) and Rapa Whelk (Rapana thomasiana, Crosse, 1861: Mollusc). J Anim Veterin Adv 8(2):240–245.
  6. Вялова ОЮ (2011) Современное состояние зооресурсов бентали Азово-Черноморского бассейна. Ростовые, морфометрические и биохимические характеристики анадары Anadara ineaquivalvis в Чёрном море (акватория Голубого Залива, ЮБК) / Болтачев АР, Зуев ГВ, Чесалин МВ и др. Промысловые биоресурсы Черного и Азовского морей. ЭКОСИ-Гидрофизика. 189–192. [Vjalova OJu (2011) The current state of bentali zoological resources of the Azov-Black Sea basin. Growth, morphometric and biochemical characteristics of Anadara Anadara inaequivalvis in the Black Sea (Blue Gulf area, SCK). Sevastopol’. JeKOSI-Gidrofizika. 189–192 (In Russ)].
  7. Новицкая ВН, Солдатов АА (2011) Эритроидные элементы гемолимфы Anadara inequivalvis (Mollusca: Arcidae) в условиях экспериментальной аноксии: функциональные и морфометрические характеристики. Морський екологічний журнал 10(1):56–64. [Novickaja VN, Soldatov AA (2011) Erythroid elements of hemolymph in Anadara inaequivalvis (Mollusca: Arcidae) under conditions of experimental anoxia: functional and morphometric characteristics. Morsk ekol zhurn 10(1):56–64. (In Russ)].
  8. Borodina AV, Soldatov AA (2019) The Effect of Anoxia on the Content and Composition of Carotenoids in the Tissues of the Bivalve Invader Anadara kagoshimensis (Tokunaga, 1906). Russ J Biol Invas 10(4): 307–314. https://doi.org/10.1134/S2075111719040027
  9. Soldatov AA, Andreenko TI, Golovina IV, Stolbov AYa (2010) Peculiarities of organization of tissue metabolism in mollusks with different tolerance to external hypoxia. J Evol Biochem Physiol 46(4): 341–349. https://doi.org/10.1134/S0022093010040022
  10. Golovina IV, Gostyukhina OL, Andreyenko TI (2016) Specific Metabolic Features in Tissues of the Ark Clam Anadara kagoshimensis Tokunaga, 1906 (Bivalvia: Arcidae), a Black Sea Invader. Russ J Biol Invas 7(2): 137–145.
  11. Gostuykhina OL, Andreenko TI (2020) Superoxide dismutase and catalase activities in tissues of the Black Sea bivalve mollusks Cerastoderma glaucum (Bruguière, 1789), Anadara kagoshimensis (Tokunaga, 1906) and Mytilus galloprovincialis Lam. as related to adaptation to their habitats. Journal of evolutionary biochemistry and physiology 56(2):113–124. https://doi.org/10.1134/S0022093020020039
  12. de Zwaan A, Babarro JMF, Monari M, Cattani O (2002) Anoxic survival potential of bivalves: (arte)facts. Comparative Biochemistry and Physiology Part A – Molecular and Integrative Physiology 131(3):615–624. https://doi.org/10.1016/s1095-6433(01)00513-x
  13. Yao C, Somero GN (2013) Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: Cell cycle regulation and DNA repair. Comparative biochemistry and physiology. Part A, Molecular and integrative physiology 165(2):159–168. https://doi.org/10.1016/j.cbpa.2013.02.024
  14. Чеснокова НП, Понукалина ЕВ, Бизенкова МН (2006) Молекулярно-клеточные механизмы инактивации свободных радикалов в биологических системах. Успехи современного естествознания 7:29–36. [Chesnokova NP, Ponukalina EV, Bizenkova MN (2006) Molekuljarno-kletochnye mehanizmy inaktivacii svobodnyh radikalov v biologicheskih sistemah [Molecular and cellular mechanisms of free radical inactivation in biological systems]. Uspehi sovremennogo estestvoznanija 7:29–36. (In Russ)].
  15. Soldatov AA, Sysoeva IV, Sysoev AA, Andreenko TI (2010) Adenylate system of tissues of the bivalve mollusk Anadara inaequivalvis under experimental anoxia. Hydrobiol J 46: 60–67. https://doi.org/10.1615/HydrobJ.v46.i5.70
  16. Golovina IV. (2019) Resistance to negative effects and the ratio of energy metabolism enzyme activity in tissues of the Black Sea molluscs Mytilus galloprovincialis Lamarck, 1819 and Anadara kagoshimensis (Tokunaga, 1906). Marine Biol J 4(3): 37–47. https://doi.org/10.21072/mbj.2019.04.3.04
  17. Soldatov AA, Golovina IV, Kolesnikova EE, Sysoeva IV, Sysoev AA (2022) Effect of Hydrogen Sulfide Loading on the Activity of Energy Metabolism Enzymes and the Adenylate System in Tissues of the Anadara kagoshimensis Clam. Inland Water Biol 15(5): 632–640. https://doi.org/10.1134/S1995082922050194
  18. Revkov NK (2016) Colonization’s features of the Black Sea basin by recent invader Anadara kagoshimensis (Bivalvia: Arcidae). Marine Biol J 1(2): 3–17. https://doi.org/10.21072/MBJ.2016.01.2.01
  19. Ревков НК, Щербань СА (2017) Особенности биологии двустворчатого моллюска Anadara kagoshimensis в Черном море. Экосистемы 9(39): 47–56. [Revkov NK, Shherban’ SA (2017) The biology of the bivalve Anadara kagoshimensis in the Black sea. Jekosistemy 9(39): 47–56. (In Russ)].
  20. Dağtekin M, Dalgiç G, Erbay M, Akpinar IÖ, Aydin M, Özdemir S, Cebeci A, Karayücel S (2023) Population abundance and growth parameters of an exotic bivalve species, Anadara kagoshimensis, in the Southwestern Black Sea. Turkish J Zool 47(1): 3. https://doi.org/10.55730/1300-0179.3109
  21. Acarli S, Lok A, Yigitkurt S (2012) Growth and survival of Anadara inaequivalvis (Bruguiere, 1789) in Sufa Lagoon, Izmir, Turkey. Israeli J Aquacult – Bamidgeh 64. https://doi.org/10.46989/001c.20623
  22. Anistratenko VV, Anistratenko OYu, Khaliman IA (2014) Conchological variability of Anadara inaequivalvis (Bivalvia, Arcidae) in the Black-Azov Sea basin. Vestnik Zool 48(5): 457–466. https://doi.org/10.2478/vzoo-2014-0054
  23. Романкевич ЕА (ред) (1980) Методы исследования органического вещества в океане. Сборник статей АН СССР, Институт океанологии им. П.П. Ширшова. М. Наука 342 с. [Romankevich EA (red) (1980) Methods of investigation of organic matter in the ocean. Sbornik statej AN SSSR, Institut okeanologii im. P.P. Shirshova. M. Nauka 342 s. (In Russ)].
  24. Голубь НА, Ерохин ВЕ, Солоницына ОР (2005) Исследование химического состава щелочного мидийного гидролизата. Морські биотехнічні системи. Збірник наукових статей НДЦ ЗС Україны “Державний океанаріум” 3:23–29. [Golub’ NA, Erohin VE, Solonicyna OR (2005) Investigation of the chemical composition of alkaline mussel hydrolysate. Mors’kі biotehnіchnі sistemi. Zbіrnik naukovih statej NDC ZS Ukraїny “Derzhavnij okeanarіum” 3:23–29. (In Russ)].
  25. Збарский БИ (1954) Определение азота аминных групп методом формольного титрования / Збарский БИ, Збарский ИБ, Солнцев АИ Практикум по биологической химии. М: Медгиз, 37–38 [Zbarskij BI (1954) Opredelenie azota aminnyh grupp metodom formol’nogo titrovaniya/ Zbarskij BI, Zbarskij IB, Solncev AI Praktikum po biologicheskoj himii [Workshop on biological chemistry]. M: Medgiz 37–38].
  26. Голубь НА, Ерохин ВЕ, Рябушко ВИ (2015) Биотехнология получения продукта лечебно-профилактического назначения из двустворчатого моллюска мидии. Вестн биотехнол физико-хим биол им. Ю.А. Овчинникова 11(2): 11–19. [Golub’ NA, Erohin VE, Rjabushko VI (2015) Biotechnology of obtaining the product of therapeutic and prophylactic appointment from the bivalve mussels. Vest Biotehnol FIziko-Himichesk Biol im. Ju.A. Ovchinnikova 11(2):11–19. (In Russ)].
  27. Гланц С (1998) Медико-биологическая статистика. Пер. с англ. М., Практика. 459 с. [Glantz S (1998) Mediko-biologicheskaya statistika [Primer of biostatistics]. Per. s angl. M., Praktika, 1998. 459 s. (In Russ)].
  28. Пивненко ТН, Ковалёв НН, Запорожец ТС, Беседнова НН, Кузнецова ТА (2015) Ферментативные гидролизаты из гидробионтов Тихого океана как основа для создания биологически активных добавок к пище и продуктов функционального питания. Владивосток. Дальнаука 160 с. [Pivnenko TN, Kovaljov NN, Zaporozhec TS, Besednova NN, Kuznecova TA (2015) Enzymatic hydrolysates from hydrobionts of the Pacific Ocean as a basis for the creation of biologically active food supplements and functional food products. Vladivostok. Dal’nauka 160 s. (In Russ)].
  29. Табакаева ОВ, Табакаев АВ (2016) Оценка двустворчатого моллюска Анадара Броутона как источника белка и минеральных элементов в питании человека. Пищ промышл 8: 58–61. [Tabakaeva OV, Tabakaev AV (2016) Assessment of bivalve mollusk of Anadara broughtoni as a source of protein and minerals in human nutrition. Pishh Promyshl 8: 58–61. (In Russ)].
  30. Mizukawa H, Okabe E (1997) Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery. British J Pharmacol 121(1): 63–70. https://doi.org/: 10.1038/sj.bjp.0701103.
  31. Хлыбова СВ, Циркин ВИ (2006) Свободный L-гистидин как один из регуляторов физиологических процессов. Вятский мед вестн 3–4. [Hlybova SV, Cirkin VI (2006) Free L-histidine as one of the regulators of physiological processes. Vjatskij Med Vestn 3–4. (In Russ)].
  32. Табакаева ОВ, Черных АГ (2013) Антиоксидантные свойства продуктов переработки двустворчатых моллюсков Дальневосточного региона. Пищевая промышленность. 9:34–36. [Tabakaeva OV, Chernyh AG (2013) Antioxidant properties of products of processing of bivalve mollusks of the Far East region. Pishh promyshl 9: 34–36. (In Russ)].
  33. Kuvaeva ZI, Lopatik DV, Markovich MM et al. (2012) Synthesis of L-ornithine L-aspartate from L-arginine. Pharmaceutical Chem J 46(8): 495–497. https://doi.org/10.1007/s11094-012-0833-x
  34. Фокина НН, Нефедова ЗА, Немова НН (2011) Биохимические адаптации морских двустворчатых моллюсков к аноксии (Обзор). Труды Карельского Научного Центра Российской Академии Наук 3:121–130. [Fokina NN, Nefedova ZA, Nemova NN (2011) Biochemical adaptations of marine bivalves to anoxic conditions (Review)]. Trudy Karel’skogo Nauchnogo Centra Rossijskoj Akademii Nauk 3:121–130. (In Russ)].
  35. Солдатов АА, Андреенко ТИ, Головина ИВ (2008) Особенности организации тканевого метаболизма у двустворчатого моллюска-вселенца Anadara inaequivalvis Bruguiere. Доклады Национальной Академии Наук Украины 4:161–165. [Soldatov AA, Andreenko TI, Golovina IV (2008) Peculiarities of the organization of tissue metabolism in the bivalve mollusc Anadara inaequivalvis Bruguiere. Doklady Nacional’noj Akademii Nauk Ukrainy 4:161–165. (In Russ)].
  36. Аюшин НБ (2001) Таурин: фармацевтические свойства и перспективы получения из морских организмов. Известия ТИНРО 129: 129–145. [Ajushin NB (2001) Taurine: pharmaceutical properties and prospects for obtaining from marine organisms. Izvestija TINRO 129: 129–145. (In Russ)].
  37. Басалай ОН, Радковец АЮ, Бушма МИ (2017) Таурин: регулятор метаболизма и лекарственное средство. Медицинские новости 5: 3–7. [Basalaj ON, Radkovec AJu, Bushma MI (2017) Taurine: the metabolic regulator and the drug. Medicinskie novosti 5: 3–7].
  38. Гостюхина ОЛ, Головина ИВ (2012) Особенности системы антиоксидантной защиты черноморских моллюсков Mytilus galloprovincialis Lam. и Anadara inaequivalvis Br. Український біохімічний журнал 84(3): 31–36. [Gostjuhina OL, Golovina IV (2012) Peculiarities of antioxidant defense system organization of the Black sea mollusks Mytilus galloprovincialis Lam. and Anadara inaequivalvis Br. Ukraїns’kij bіohіmіchnij zhurnal 84(3): 31–36. (In Russ)].
  39. Давидович ВВ, Пивненко ТН (2001) Аминокислоты двустворчатых моллюсков: биологическая роль и применение в качестве БАД. Известия ТИНРО 129: 146–153. [Davidovich VV, Pivnenko TN (2001) Amino acids of bivalve molluscs: biological role and use as a dietary supplement. Izvestija TINRO 129: 146–153. (In Russ)].
  40. Андреенко ТИ, Солдатов АА, Головина ИВ (2009) Особенности реорганизации тканевого метаболизма у двустворчатого моллюска Anadara inaequivalvis (Bruguiere, 1789) в условиях экспериментального голодания. Морской экологический журнал 8(3): 15–24. [Andreenko TI, Soldatov AA, Golovina IV (2009) Characteristics of tissue metabolism reorganization in bivalve mollusk Anadara inaequivalvis (Bruguiere, 1789) under experimental starvation conditions. Morskoj ekologicheskij zhurnal 8(3): 15–24. (In Russ)].
  41. Ленинджер А (1985) Основы биохимии / В 3-х т. 2. Пер. с англ. М. Мир 368 с. [Lenindzher A (1985) Osnovy biohimii [Principles]/ V 3-h t. 2. Per. s angl. M. Mir 368 s. (In Russ)].
  42. Истомина АА, Довженко НВ, Челомин ВП (2011) Реакция антиоксидантной системы на аноксию и реоксигенацию у морского двустворчатого моллюска Scapharca broughtoni. Вестн Моск гос обл универс 3: 12–16. [Istomina AA, Dovzhenko NV, Chelomin VP (2011) Antioxidant Defenses During Anoxia And Aerobic Recovery In Marine Bivalvia Scapharca Broughtoni. Vestn Mosk Gos Obl Univer 3:12–16. (In Russ)]. https://doi.org/10.18384/2224-0209-2011-3-440
  43. Карбышев МС, Абдуллаев ШП (2018) Биохимия оксидативного стресса: учебно-методическое пособие. ФГБОУ ВО РНИМУ имени Н.И. Пирогова Минздрава России. Москва. Издательство ХХ 60 с. [Karbyshev MS, Abdullaev ShP (2018) Biohimija oksidativnogo stressa: uchebno-metodicheskoe posobie. FGBOU VO RNIMU imeni N.I. Pirogova Minzdrava Rossii. Moskva. Izdatel’stvo HH 60 s.].
  44. Кения МВ, Лукаш АИ, Гуськов ЕП (1993) Роль низкомолекулярных антиоксидантов при окислительном стрессе. Успехи современной биологии 113(4): 456–470. [Kenija MV, Lukash AI, Gus’kov EP (1993) Rol’ nizkomolekuljarnyh antioksidantov pri okislitel’nom stresse. Uspehi sovremennoj biologii 113(4): 456–470. (In Russ)].
  45. Soldatov AA, Gostyukhina OL, Borodina AV, Golovina IV (2013) Qualitative composition of carotenoids, catalase and superoxide dismutase activities in tissues of the bivalve mollusc Anadara inaequivalvis (Bruguiere, 1789). J Evol Biochem Physiol 49(4): 255–263. https://doi.org/255–63. 10.1134/S0022093013040026
  46. Soldatov AA, Gostyukhina OL, Borodina AV, Golovina IV (2017) Glutathione Antioxidant Complex and Carotenoid Composition in Tissues of the Bivalve Mollusk Anadara kagoshimensis (Tokunaga, 1906). J Evol Biochem Physiol 53: 289–297. https://doi.org/10.1134/S0022093017040056
  47. Gostjuhina OL, Andreenko TI (2020) Enzymatic and Low-Molecular Weight Parts of Antioxidant Complex in Two Species of Black Sea Mollusks with Different Resistance to Oxidative Stress: Mytilus galloprovincialis Lam. and Anadara kagoshimensis (Tokunaga, 1906). Biol Bull Rev 10: 38–47. https://doi.org/10.1134/S2079086420010041
  48. Nakano T, Yamada K, Okamura K (2017) Duration rather than frequency of anoxia causes mass mortality in ark shell Anadara kagoshimensis. Marine Poll Bull 125(1–2): 86–89. https://doi.org/10.1016/j.marpolbul.2017.07.073

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The content of free amino acids in the hemolymph of Anadara Anadara kagoshimensis in normoxia (1) and hypoxia (2). Note. Glutamine and asparagine decompose into glutamic and aspartic acids during separation in an acidic medium, therefore, an ammonia peak appears on the chromatogram (see Fig. 1, 2, 3).

Download (71KB)
3. Fig. 2. Amino acid composition of Anadara kagoshimensis soft tissue hydrolysates in normoxia (1) and hypoxia (2).

Download (65KB)
4. Fig. 3. The content of free amino acids (mass fraction of the total amount in %) in Black Sea mollusks in normoxia conditions, where 1 is the amino acids of the hemolymph and soft tissues of the mussel Mytilus galloprovincialis [26], 2 are the amino acids of the soft tissues of Rapana venosa Rapana [26], 3 are the amino acids of the hemolymph of Anadara Anadara kagoshimensis.

Download (134KB)
5. Fig. 4. Diagram of the relationship of amino acid catabolism with the Krebs cycle and the urea cycle. (a) – In conditions of normoxia, (b) – in conditions of hypoxia, which ensure the adaptation of Anadara Anadara kagoshimensis to conditions The Black and Azov Seas (the black arrows indicate typical metabolic pathways; the gray dotted line indicates the stages of ammonia transfer from the cytosol to the mitochondria and into the ornithine cycle; the double arrows indicate the stages conjugating the work of CTK (TAC) and the production of macroergic compounds with the utilization of ammonia in the cytosol and the synthesis of urea in the ornithine cycle, the black dotted lines are reversed stages of the CTC). The following designations were used: cGDHC and mGDHC – cytosolic and mitochondrial glutamate dehydrogenase complex, respectively; cALT and mALT – cytosolic and mitochondrial pool of alanine aminotransferase; CPS1 – carbamoyl phosphate synthetase; cAST – cytosolic pool of aspartate aminotransferase; CMDh - cytosolic pool of malate dehydrogenase; TAC – tricarboxylic acid cycle (original scheme with

Download (421KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».