PARAMETERS OF ENERGY METABOLISM AND ADENYLATE SYSTEM OF MYTILUS GALLOPROVINCIALIS TISSUES (LAMARCK. 1819) IN CONDITIONS OF MODERATE HYPOXIA

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of moderate hypoxia on the processes of energy metabolism in the tissues (gills, hepatopancreas) of the Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) was studied experimentally. The control group of mollusks contained 6.8–6.9 mgO2 l–1, the experimental group at 1.9–2.0 mgO2 l–1. In both cases, the water temperature was 22 ± 1°C, the salinity was 17–18‰. The exposition – 72 hours. The oxygen content in the water was lowered by bubbling with nitrogen gas for 4–5 hours. In conditions of moderate hypoxia, a complex of reactions aimed at maintaining the energy status of tissues developed in the body of the Mediterranean mussel. Aerobic processes were clearly limited, as evidenced by a decrease in succinate dehydrogenase (SDH) activity. At the same time, the processes of anaerobic glycolysis intensified. The activity of aldolase, malate dehydrogenase (MDH) increased, the content of pyruvate in tissues increased. This was not accompanied by an increase in lactate dehydrogenase (LDH) activity and an increase in lactate content. The tissues retained their original energy status. The content of the ATP fraction remained at the level of control values, which reflected the adaptive orientation of the reorganization of tissue metabolism. The ability of hepatopancreas to accumulate ADP and AMP fractions from circulation systems under experimental hypoxic load was noted.

Авторлар туралы

A. Kokhan

Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: alekssoldatov@yandex.ru
Russia, Sevastopol

A. Soldatov

Kovalevsky Institute of Biology of the Southern Seas of RAS; Sevastopol State University

Хат алмасуға жауапты Автор.
Email: alekssoldatov@yandex.ru
Russia, Sevastopol; Russia, Sevastopol

I. Golovina

Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: alekssoldatov@yandex.ru
Russia, Sevastopol

Yu. Bogdanovich

Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: alekssoldatov@yandex.ru
Russia, Sevastopol

N. Shalagina

Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: alekssoldatov@yandex.ru
Russia, Sevastopol

V. Rychkova

Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: alekssoldatov@yandex.ru
Russia, Sevastopol

Әдебиет тізімі

  1. Haszprunar G, Wanninger A (2012) Molluscs. Current Biol 22 (13): R510–514 https://doi.org/10.1016/j.cub.2012.05.039
  2. Zaitsev YP (1986) Contourobionts in ocean monitoring. Environ Monit Assess 7 (1): 31–38. https://doi.org/10.1007/BF00398026
  3. Berger VJ, Kharazova AD (1997) Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355: 115–126.
  4. Miyamoto Y, Iwanaga C (2017) Effects of sulphide on anoxia-driven mortality and anaerobic metabolism in the ark shell Anadara kagoshimensi. J Mar Biol Assoc UK 97 (2): 329–336. https://doi.org/10.1017/S0025315416000412
  5. Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev 79: 207–233. https://doi.org/10.1017/s1464793103006195
  6. Storey KB (2004) Gene regulation in physiological stress. Inter Congress Ser 1275: 1–13.
  7. Larade K, Storey KB (2002) A profile of the metabolic responses to anoxia in marine invertebrates. Cell and molecular responses to stress. Vol. 3. Sensing, signaling and cell adaptation. 2002.
  8. Tielens A, Van Hellemond J (1998) The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta 1365: 71–78. https://doi.org/10.1016/s0005-2728(98)00045-0
  9. Kladchenko ES, Andreyeva AY, Kukhareva TA, Soldatov AA (2020) Morphologic, cytometric and functional characterisation of Anadara kagoshimensis hemocytes. Fish Shellfish Immunol 98: 1030–1032.
  10. Rosenberg R, Nilsson HC, Diaz RJ (2001) Response of benthic fauna and changing sediment redox profiles over a hypoxic gradient. Estuar Coast Shelf S 53 (3): 343–350.
  11. Hilbish TJ, Mullinax A, Dolven SI, Meyer A, Koehn RK, Rawson P (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Mar Biol 136: 69–77. https://doi.org/10.1007/s002270050010
  12. Benali I, Boutiba Z, Merabet A, Chèvre N (2015) Integrated use of biomarkers and condition indices in mussels (Mytilus galloprovincialis) for monitoring pollution and development of biomarker index to assess the potential toxic of coastal sites. Marine Pollution Bull 95: 385–394.
  13. Kulikova AD, Soldatov AA, Andreenko TI (2015) Tissue transaminase activities in the black-sea mollusc Mytilus galloprovincialis Lam. with different shell color. J Evol Biochem Physiol 51 (1): 23–31. https://doi.org/10.1134/S0022093015010044
  14. Ribera D, Narbonne JF, Michel X, Livingstone DR, O’Hara S (1991) Responses of antioxidants and lipid peroxidation in mussels to oxidative damage exposure. Comp Biochem Physiol 100C: 177–181. https://doi.org/10.1016/0742-8413(91)90149-n
  15. Soldatov AA, Gostyukhina OL, Golovina, IV (2008) State of the antioxidant enzyme complex in tissues of the Black Sea mollusc Mytilus galloprovincialis under natural oxidative stress. J Evol Biochem Physiol 44 (2):175–182. https://doi.org/10.1134/S0022093008020047
  16. Soldatov AA, Gostyukhina OL, Golovina IV (2014) Functional states of antioxidant enzymatic complex of tissues of Mytillus galloprovincialis Lam. under conditions of oxidative stress. J Evol Biochem Physiol 50 (3): 206–214.
  17. Kamyshnikov VS (2004) Handbook of Clinical and biochemical studies and laboratory diagnostics. M. MEDpress-inform. 494 p.
  18. Lantushenko AO, Vodiasova EA, Kokhan AS, Meger YaV, Soldatov AA (2023) Aldolase of Mytilus galloprovincialis, Lamarck, 1819: Gene structure, tissue specificity of expression level and activity. Comp Biochem Physiol Part B: Biochem Molecular Biol 267: Art. no. 110862 (8 p.). https://doi.org/10.1016/j.cbpb.2023.110862
  19. Kolesnikova EE, Golovina IV (2020) Oxidoreductase Activities in Oxyphilic Tissues of the Black Sea Ruff Scorpaena porcus under Short-term Hydrogen Sulfide Loading. J Evol Biochem Physiol 56 (5): 459–470. https://doi.org/10.1134/S0022093020050099
  20. Rezyapkin VI, Slyshenkov VS, Zavodnik IB, Burd VN, Sushko LI, Romanchuk EI, Karaedova LM (2009) Laboratory workshop on biochemistry and biophysics. Grodno. GrSU.
  21. Itzhaki RF, Gill DM (1964) A micro-biuret method for estimating proteins. Analytical Biochemistry 9 (4): 401–410.
  22. Holm-Hansen O, Booth CR (1966) The measurement of adenosine triphosphate in the Ocean and its ecological significance. Limnol Oceanogr 11 (4): 510–519. https://doi.org/10.4319/lo.1966.11.4.0510
  23. Atkinson DE (1968) The energy charge of the adenylate pools as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7 (11): 4030–4034. https://doi.org/10.1021/bi00851a033
  24. Iverson TM (2013) Catalytic mechanisms of complex II enzymes: A structural perspective. Biochimica et Biophysica Acta 1827 (5): 648–657. https://doi.org/10.1016/j.bbabio.2012.09.008
  25. Bacchiocchi S, Principato G (2000) Mitochondrial contribution to metabolic changes in the digestive gland of Mytilus galloprovincialis during anaerobiosis. J Exp Zool 286: 107–113.
  26. Soldatov AA, Andreenko TI, Sysoeva IV, Sysoev AA (2009) Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia. J Evol Biochem Physiol 45 (3): 349–355. https://doi.org/10.1134/S002209300903003X
  27. Harcet M, Perina D, Pleše B (2013) Opine dehydrogenases in marine invertebrates. Biochem Genet 51 (9): 666–676. https://doi.org/10.1007/s10528-013-9596-7
  28. Vázquez-Dorado S, De Carlos A, Comesaña AS, Sanjuán A (2013) Phylogenetic comparison of opine dehydrogenase sequences from marine invertebrates. Biochem Genet 51 (1–2): 54–65. https://doi.org/10.1007/s10528-012-9551-z
  29. Zammit VA (1978) Possible relationship between energy metabolism of muscle and oxygen binding characteristics of haemocyanin of cephalopods. J Mar Biol Assoc UK 58:421–424. https://doi.org/10.1017/S0025315400028083
  30. Vázquez-Dorado SSanjuan A, Comesaña AS, Carlos A (2011) Identification of octopine dehydrogenase from Mytilus galloprovincialis. Comp Biochem Physiol Part B 160: 94–103. https://doi.org/10.1016/j.cbpb.2011.07.003
  31. Storey KB, Dando PR (1982) Substrate specificities of octopine dehydrogenases from marine invertebrates. Comp Biochem Physiol B Comp Biochem 73: 521–528. https://doi.org/10.1016/0305-0491(82)90069-4
  32. Gosling E (1981) Ecological genetics of the mussels Mytilus edulis and M. galloprovincialis on Irish coasts. Marine Ecology Progress Series 4 (2): 221–227. https://doi.org/10.3354/meps004221
  33. Sokolova IM, Sokolov EP, Fouzia Haider F (2019) Mitochondrial Mechanisms Underlying Tolerance to Fluctuating Oxygen Conditions: Lessons from Hypoxia-Tolerant Organisms. Integr Comp Biol 59 (4): 938–952. https://doi.org/10.1093/icb/icz047
  34. Ivanina AV, Irina Nesmelova I, Leamy L, Sokolov EP, Sokolova IM (2016) Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol 219 (Pt 11): 1659–1674. https://doi.org/10.1242/jeb.134700
  35. Hardie DG (2003) Minireview. The AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144: 5179–5183. https://doi.org/10.1210/en.2003-0982
  36. Goodchild CG, Frederich M, Zeeman SI (2015) AMP-activated protein kinase is a biomarker of energetic status in freshwater mussels exposed to municipal effluents. Sci Total Environ 512–513: 201–209. https://doi.org/10.1016/j.scitotenv.2015.01.065
  37. Guévélou E, Huvet A, Sussarellu R, Milan M, Guo X, Li L, Zhang G, Quillien V, Daniel JY, Quéré C, Boudry P, Corporeau C (2013) Regulation of a truncated isoform of AMP-activated protein kinase α (AMPKα) in response to hypoxia in the muscle of Pacific oyster Crassostrea gigas. J Comp Physiol B 183 (5): 597–611. https://doi.org/10.1007/s00360-013-0743-6
  38. Sokolov EP, Markert S, Hinzke T, Hirschfeld C, Becher D, Ponsuksili S, Sokolova IM (2019) Effects of hypoxia-reoxygenation stress on mitochondrial proteome and bioenergetics of the hypoxia-tolerant marine bivalve Crassostrea gigas. J Proteomics 194: 99–111. https://doi.org/10.1016/j.jprot.2018.12.009
  39. Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF (2003) 5-Aminoimidazole- 4-carboxamide 1-beta-D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol 284: R936–R944. https://doi.org/10.1152/ajpregu.00319.2002
  40. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280: 29060–29066. https://doi.org/10.1074/jbc.M503824200
  41. Vodáková B, Douda K (2019) Variation in Glycogen Distribution among Freshwater Bivalve Tissues: Simplified Protocol and Implications. J Aquat Anim Health 31 (1): 107–111. Epub 2019 Feb 4.https://doi.org/10.1002/aah.10057
  42. Kemp BE, Stapleton D, Campbell DJ, Chen Z-P, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31: 162–168. https://doi.org/10.1042/bst0310162
  43. Barnes BR, Marklund S, Steiler TL, Walter M, Hjälm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath JR, Andersson L (2004) The 5 -AMP-activated protein kinase 3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279: 38441–38447. https://doi.org/10.1074/jbc.M405533200

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (90KB)
3.

Жүктеу (66KB)
4.

Жүктеу (75KB)
5.

Жүктеу (24KB)

© А.С. Кохан, А.А. Солдатов, И.В. Головина, Ю.В. Богданович, Н.Е. Шалагина, В.Н. Рычкова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>