Сравнительная нейроанатомия нисходящих нейронов в надглоточных ганглиях тараканов из семейства Blaberidae (blattodea)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведено сравнительное исследование морфологии нисходящих нейронов, связывающих надглоточный ганглий и торакальные ганглии у тараканов, представителей семейства Blaberidae, которые различаются защитным поведением и способностью к полету. Строение нейронов у тараканов этих семейств сравнивали с нисходящими нейронами таракана Periplaneta americana. Выявлено сходство в количестве, пространственном распределении, расположении аксонов и дендритов нисходящих нейронов у тараканов Leucophaea maderae, Gromphadorhina portentosa, Blaberus craniifer, Nauphoeta cinerea (Blaberidae). Обнаружены нейроны, гомологичные оцеллярным, механочувствительным, зрительным нисходящим нейронам, описанным у таракана Periplaneta americana. Сделано предположение, что в процессе эволюции отряда таракановых изменение адаптивного поведения при опасности произошло за счет трансформации сенсорных входов и двигательных ответов, при этом система нисходящих нейронов осталась неизменной.

Об авторах

И. Ю. Северина

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Автор, ответственный за переписку.
Email: severinaira@mail.ru
Россия, Санкт-Петербург

И. Л. Исавнина

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: severinaira@mail.ru
Россия, Санкт-Петербург

Список литературы

  1. Анисюткин ЛН (2006) Отряд таракановые (Dictyoptera) –эволюция и систематика. РЭТ-инфо 2 (58): 6–8. [Anisyutkin LN (2006) Order Blattodea (Dictyoptera) – evolution and phylogeny. RET-info 2 (58): 6–8. (In Russ)].
  2. Kien J (1990) Neuronal activity during spontaneous walking: I. Starting and stopping. Comp Biochem Physiol A 95: 607–621. https://doi.org/10.1016/0300-9629(90)90747-g
  3. Holmes P, Full RJ, Koditschek D, Guckenheimer J (2006) The dynamics of legged locomotion: models, analyses and challenges. SIAM Rev 48 (2): 207–304. https://doi.org/10.1137/S0036144504445133
  4. Ritzmann RE, Büschges A (2007) Adaptive motor behavior in insects. Curr Opin Neurobiol 17: 629–636. https://doi.org/10.1016/j.conb.2008.01.001
  5. Heinrich R (2002) Impact of descending brain neurons on the control of stridulation, walking, and flight in orthoptera. Microsc Res Tech 56 (4): 292–301. https://doi.org/10.1002/jemt.10033
  6. Staudacher EM (2001) Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus. J Comp Physiol A187: 1–17. https://doi.org/10.1007/s003590000171
  7. Card GM (2012) Escape behaviors in insects. Curr Opin Neurobiol 22 (2): 180–186. https://doi.org/10.1016/j.conb.2011.12.009
  8. Herberholz J, Marquart GD (2012) Decision making and behavioral choice during predator avoidance. Front Neurosci 6.125. https://doi.org/10.3389/fnins.2012.00125
  9. Camhi JM, Tom W (1978) The escape behavior of the cockroach Periplaneta americana. I. Turning response to wind puffs. J Comp Physiol 128: 193–201. https://doi.org/10.1007/BF00656852
  10. Ritzmann RE (1984) The cockroach escape response. In: Eaton R (ed) Neural mechanisms of startle behavior. Plenum Press, New York 93–131. https://doi.org/10.1007/978-1-4899-2286-1_4
  11. Nelson MC, Fraser J (1980) Sound production in the cockroach, Gromphadorhina portentosa: evidence for communication by hissing. Behav Ecol Sociobiol 305–314.
  12. Roth LM, Hartman HB (1967) Sound production and its evolutionary significance in the Blattaria. Ann Entomol Soc Am 609 (4): 740–752. https://doi.org/10.1093/aesa/60.4.740
  13. Schal C, Fraser J, Bell WJ (1982) Disturbance stridulation and chemical defence in nymphs of the tropical cockroach Megaloblatta blaberoides. J Insect Physiol 28 (6): 541–552. https://doi.org/10.1016/0022-1910(82)90035-X
  14. Simpson BS, Ritzmann RE, Pollack AJ (1986) A comparison of the escape behaviors of the cockroaches Blaberus craniifer and Periplaneta americana. J Neurobiol 17 (5): 405–419. https://doi.org/10.1002/neu.480170505
  15. Bell W J, Roth LM, Nalepa CA (2007) Cockroaches: ecology, behavior, and natural history. Johns Hopkins Univer Press.
  16. Nelson MC (1979) Sound production in the cockroach, Gromphadorhina portentosa: the sound-producing apparatus. J Comp Physiol 132: 27–38. https://doi.org/10.1007/BF00617729
  17. Chou SY, Huang ZY, Chen ShCh, Yang RL, Kou R (2007) Antenna contact and agonism in the male lobster cockroach, Nauphoeta cinerea. Horm Behav 52 (2): 252–260. https://doi.org/10.1016/j.yhbeh.2007.04.013
  18. Bouchebti S, Arganda S. (2020) Insect lifestyle and evolution of brain morphology. Curr Opin Insect Sci 42: 90–96. https://doi.org/10.1016/j.cois.2020.09.012
  19. Северина ИЮ, Князев АН (2019) Нисходящие интернейроны в надглоточном ганглии мадагаскарского таракана Gromphadorhina portentosa. Ж эвол биохим физиол 55 (5): 377–380. [Severina IYu, Knyazev AN (2019) Descending Interneurons in the Supraesophageal Ganglion of the Madagascar Cockroach Gromphadorhina portentosa. J Evol Biochem Phys 55 (5): 429–432. (In Russ)]. https://doi.org/10.1134/S0022093019050132
  20. Чайка СЮ (2017) Гистология насекомых: Учебное пособие М. Изд-во Моск. ун-та. [Chaika SYu (2017) Gistologiya nasekomykh: Uchebnoe posobie M. Izdat Moskovsk univer. (In Russ)].
  21. Okada R, Sakura M, Mizunami M (2003) Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. J Comp Neurol 458: 158–174. https://doi.org/10.1002/cne.10580
  22. Kononenko NL, Hartfil S, Willer J, Ferch J, Wolfenberg H, Pflüger HJ (2019) A population of descending tyraminergic/octopaminergic projection neurons of the insect deutocerebrum. J Comp Neurol 527 (6): 1027–1038. https://doi.org/10.1002/cne.24583
  23. Ohyama T, Toh Y (1990) Morphological and physiological characterization of descending ocellar interneurons in the American cockroach. J Comp Neurol 301: 511–519. https://doi.org/10.1002/cne.903010403
  24. Mizunami M (1995) Morphology of higher order ocellar interneurons in the cockroach brain. J Comp Neurol 362 (2): 293–304. https://doi.org/10.1002/cne.903620211
  25. Leung V, Comer CM (2001) Identification and characterization of a visual interneuron in the cockroach, Periplaneta americana, equivalent to DCMD. Soc Neurosci Abstr 27.
  26. Comer C, Baba Y (2011) Active touch in orthopteroid insects: behaviours, multisensory substrates and evolution. Philos Trans R Soc Lond B Biol Sci 366 (1581): 3006–3015. https://doi.org/10.1098/rstb.2011.0149
  27. Burdohan JA, Comer CM (1996) Cellular organization of an antennal mechanosensory pathway in the cockroach, Periplaneta americana. J Neurosci 16: 5830–5843. https://doi.org/10.1523/JNEUROSCI.16-18-05830
  28. Ye S, Comer CM (1996) Correspondence of escape-turning behavior with activity of descending mechanosensory interneurons in the cockroach, Periplaneta americana. J Neurosci 16 (18): 5844–5853. https://doi.org/10.1523/JNEUROSCI.16-18-05844
  29. Staudacher E, Schildberger K (1998) Gating of sensory responses of descending brain neurons during walking in crickets. J Exp Biol 201 (4): 559–572. https://doi.org/10.1242/jeb.201.4.559
  30. Северина ИЮ, Исавнина ИЛ, Князев АН (2016) Топография восходящих и нисходящих нейронов надглоточного, мезо- и метаторакальных ганглиев у древне- и новокрылых насекомых. Ж эвол биохим и физиол 52 (5): 362–369. [Severina IYu, Isavnina IL, Knyazev AN (2016) Topographic anatomy of ascending and descending neurons of the supraesophageal, meso- and metathoracic ganglia in paleo- and neopterous insects. J Evol Biochem Phys 52 (5): 397–406. (In Russ)]. https://doi.org/10.1134/S0022093016050082
  31. Gonzalez-Bellido PT, Peng H, Yang J, Georgopoulos AP, Olberg RM (2013) Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. Proc Natl Acad Sci USA 110 (2): 696–701. https://doi.org/10.1073/pnas.1210489109
  32. Mizunami M (1995) Information processing in the insect ocellar system: comparative approaches to the evolution of visual processing and neural circuits. Adv Insect Physiol 25: 151–265. https://doi.org/10.1016/S0065-2806(08)60065-X
  33. Camhi JM (1988) Escape behavior in the cockroach: distributed neural processing. Experientia 44: 401–408. https://doi.org/10.1007/BF01940534
  34. Ritzmann RE (1993) The neural organization of cockroach escape and its role in context-dependent orientation. Biological neural networks in invertebrate neuroethology and robotics (Eds.) Beer RD, Ritzmann RE, McKenna T. Acad Press Professional. United States 113–137.
  35. Dagan D, Camhi JM (1979) Responses to wind recorded from the cercal nerve of the cockroach Periplaneta americana: II. Directional selectivity of the sensory neurons innervating single columns of filiform hairs. J Comp Physiol 133: 103–110. https://doi.org/10.1007/BF00657524
  36. Comer CM (1985) Analyzing cockroaches escape behavior with lesions of individual giant interneurons. Brain Res 335 (2): 342–346. https://doi.org/10.1016/0006-8993(85)90490-1
  37. Tauber E, Camhi JM (1995) The wind-evoked escape behavior of the cricket Gryllus bimaculatus: integration of behavioral elements. J Exp Biol 198 (9): 1895–1907. https://doi.org/10.1242/jeb.198.9.1895
  38. Schöneich S, Schildberger K, Stevenson PA (2011) Neuronal organization of a fast-mediating cephalothoracic pathway for antennal tactile information in the cricket (Gryllus bimaculatus DeGeer). J Comp Neurol 519 (9): 1677–1690. https://doi.org/10.1002/cne.22594
  39. Erickson JC, Herrera M, Bustamante M, Shingiro A, Bowen T (2015) Effective stimulus parameters for directed locomotion in Madagascar hissing cockroach biobot. PLoS One 10: e0134348. https://doi.org/10.1371/journal.pone.0134348
  40. Bell WJ (1978) Directional cues in tactile stimuli involved in agonistic encounters in cockroaches. Physiol Entomol 3 (1): 1–6. https://doi.org/10.1111/j.1365-3032.1978.tb00125.x
  41. Bell WJ, Tobin TR, Vogel G, Surber JL (1983) Visual course control of escape responses in the cockroach Blaberus craniifer: role of internal and external orientation information. Physiol Entomol 8 (2): 121–132. https://doi.org/10.1111/j.1365-3032.1983.tb00341.x
  42. Olsen AC, Triblehorn JD (2014) Neural responses from the filiform receptor neuron afferents of the wind-sensitive cercal system in three cockroach species. J Insect Physiol 68: 76–86. https://doi.org/10.1016/j.jinsphys.2014.07.002
  43. McGorry CA, Newman CN, Triblehorn JD (2014) Neural responses from the wind-sensitive interneuron population in four cockroach species. J Insect Physiol 66: 59–70. https://doi.org/10.1016/j.jinsphys.2014.05.017
  44. Ganihar D, Libersat F, Wendle G, Camhi JM (1994) Wind-evoked evasive responses in flying cockroaches. J Comp Physiol A 175: 49–65. https://doi.org/10.1007/BF00217436
  45. Ding Y, Lillvis JL, Cande J, Berman GJ, Arthur BJ, Long X, Stern DL (2019) Neural evolution of context-dependent fly song. Current Biol 29 (7): 1089–1099. https://doi.org/10.1016/j.cub.2019.02.019
  46. Supple JA, Pinto-Benito D, Khoo C, Wardill TJ, Fabian ST, Liu M, Gonzalez-Bellido PT (2020) Binocular encoding in the damselfly pre-motor target tracking system. Current Biol 30 (4): 645–656. https://doi.org/10.1016/j.cub.2019.12.031
  47. Baba Y, Tsukada A, Comer CM (2010). Collision avoidance by running insects: antennal guidance in cockroaches. J Exp Biol 213 (13): 2294–2302. https://doi.org/10.1242/jeb.036996
  48. Okada J, Toh Y (2006) Active tactile sensing for localization of objects by the cockroach antenna. J Comp Physiol A 192: 715–726. https://doi.org/10.1007/s00359-006-0106-9

Дополнительные файлы


© И.Ю. Северина, И.Л. Исавнина, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах